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Interferometric synthetic aperture radar (InSAR) is an effective technique for monitoring the risk of large-scale 

sediment movements because it can broadly and routinely observe the extent of landslides. To detect interference 

fringes with the possibility of landslide movements from differential interferograms, it is common for experts to 

interpret these fringes considering the effects of water vapor as well as the topography and other factors. Increasing the 

accuracy of detecting landslides is an important issue in the usage of InSAR. Convolutional Neural Networks (CNNs) 

that enable image recognition with sufficient accuracy have recently been developed. To efficiently detect landslide 

candidate interference fringes, this study evaluated the effectiveness of introducing a CNN model to detect the 

interference fringes representing landslide movements using similar processes as experts techniques. As a result, the 

CNN model was able to detect landslide candidate interference fringes that had been detected by experts with a recall of 

approximately 90%. 
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1. INTRODUCTION 

 
In Japan, serious damage is often caused by 

large-scale erosion and sedimentation processes, 

such as the heavy rain caused by the 2011 Typhoon 

No. 12 (Talas) and the deep-seated landslides and 

landslide dams caused by the 2008 Iwate-Miyagi 

Inland Earthquake. In the prevention/mitigation of 

sediment disasters, the monitoring of potential 

landslide slopes based on their detection is essential. 
An interference analysis using synthetic aperture 

radar mounted on a satellite, i.e., interferometric 

synthetic aperture radar (InSAR), is a monitoring 

technique that can broadly and routinely observe 

minor landslide movements. Differential 

Interferometric SAR (DInSAR), which provides a 

measurement accuracy of several centimeters, is an 

effective technique for detecting landslides. Because 

Japan's mountainous areas are widely covered with 

forests, analyses of ground surface movements with 

a few SAR images can be performed to meet 

requirements such as the number of persistent 

scatterers or the need for multiple analytic pairs with 

good coherence. 
In recent years, multiple artificial satellites 

equipped with SAR with resolutions of several 

meters have been in operation worldwide. Increases 

in the observation frequency due to the operation of 

multiple satellites and the expansion of the 

observation width will enable more frequent 

landslide monitoring in the same location and 

DInSAR for landslide monitoring will be used more 

than ever before. 

Changes in the interference fringes in differential 

interferograms obtained from DInSAR may appear 

due to factors other than ground surface movements. 

There are various factors that produce interference 

fringes, such as satellite orbit differences or the 

delay of radio waves due to water vapor [Shimada, 

1999]. However, it is difficult to thoroughly remove 

local effects that appear in slopes from global 

effects on a large spatial scale. Therefore, the 

detection of interference fringes that may indicate 

landslide movements depends on expert 

interpretations. However, it would require enormous 

amounts of time and effort for experts to interpret 

all the differential interferograms created from 

observational data obtained over wide areas at high 

frequency. In addition, variations in the judgment 

criteria are likely to occur among experts. To 
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increase the accuracy of landslide detection is an 

important issue in the usage of DInSAR. 
In recent years, to deal with the large amount of 

image data, several models have been developed 

[e.g., Krizhevsky et al., 2012] that recognize images 

with high accuracy using Convolutional Neural 

Networks (CNNs), one of the deep learning 

approaches. Case studies on CNNs for remote 

sensing images have been increasing. Deep learning 

using SAR data include studies on automatic target 

recognition from reflection intensity images [e.g., 

Wilmanski et al., 2016] and on land cover 

classification using polarimetric SAR data [e.g., 

Zhou et al., 2016]. However, there are no cases 

where the locations of ground surface movements 

are detected from differential interferograms. 
Therefore, with the aim of efficiently detecting 

interference fringes that may represent landslides 

from differential interferograms, this study 

attempted to evaluate the effectiveness of 

introducing a CNN model to detect interference 

fringes representing landslide movements, using 

similar processes to those of experts. 
 

2. METHOD 
 

2.1 Learning model 

We used CNNs for learning. CNNs are a type of 

forward-propagation neural network having 

two-dimensional convolution layers, and as a 

specific feature, high-level characteristics can be 

obtained by synthesizing low-level characteristics. 

[LeCun et al., 2015]. 
 Various architectures have been proposed for 

CNNs [Okatani, 2016]. In this study, we adopted 

AlexNet [Krizhevsky et al., 2012] because the 

amount of training data is small, the learning takes 

less time than the deep architecture, and there are 

many research results (Fig. 1). In the AlexNet 

architecture, the hidden layer consists of five 

convolutional layers, two pooling layers, and two 

fully connected layers and ReLU was adopted as an 

activation function. The output layer consists of one 

 

Table 1 The learning conditions for the CNN model 

 
*[David et al., 1986] 

Parameter Meaning Setting value

Optimization 
method

Optimization calculation method for 
searching for optimal weight 
parameter in learning of neural 
network

SGD* 
(Stochastic 

gradient 
descent)

Initial learning
rate

Parameter of SGD.
The initial value of the coefficient that 
determines the size of update amount 
to the parameters (weight, bias) 
learned in the CNN.

0.01

Learning rate
schedule
method

Parameter of SGD.
A method of changing the learning 
rate from the initial value as the 
learning time passes.

1/10 each 
time 5,000 

times of 
iteration

Weight decay

Parameter of SGD.
For the coefficient of reducing the 
weight of learning to be set for 
preventing overfitting to the learning 
data of the neural network.

0.0005

Momentum
Parameter of SGD. 
The techniques to enhance the 
convergence of learning.

0.9

Mini-batch
size

Number of learning data units for 
calculating error with one iteration of 
learning.

50

Number of
iterations

Number of times to learning
iterations

30,000

Fig. 1 Architecture of the CNN model and image of (a) the training stage and (b) the detection stage 
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fully connected layer, and Softmax was adopted as 

an activation function. 
 The CNN model conducted learning with back 

propagation using mini-batch stochastic gradient 

descent. For the learning conditions, the same 

conditions as that of AlexNet were adopted (Table 

1), except for the parameters shown below. The 

parameters that depend on the number of training 

data (the learning rate schedule method, the 

mini-batch size, and the number of iterations) were 

determined considering the number of used training 

data after confirming that the learning converged. 
 

2.2 Differential interferograms used for learning 

For learning, we used the differential 

interferograms of ALOS/PALSAR from 2006 to 

2011. We used images of Mt. Gassan in Yamagata 

Prefecture, the northern part of Nagano Prefecture, 

Mt. Hakusan in Ishikawa Prefecture, the Nara and 

Wakayama prefectures (the Kii Peninsula), and the 

eastern part of Kochi Prefecture, including locations 

previously detected as having the possibility of 

landslides [Kamiyama et al., 2016, 2017]. Fig. 2 

shows the observed area and Table 2 shows a list of 

the observed differential interferogram data used for 

the training data. The data are observed in high- 

resolution mode and the image processing level is 

L1.0.  

Fig. 3 shows the processing flow of DInSAR. 

Interference fringes caused by changes in the vapor 

distribution in the atmospheric air between each 

observation often appear in DInSAR. When 

interference fringes resulting from atmospheric air  
are found in differential interferograms, it may be 

unable to learn the interference fringes caused by 

landslides properly and may misdetect them. 

Therefore, we used the global error removal filter 

proposed by Kusano et al. [2015] to remove 

interference fringes resulting from atmospheric air, 

which have a larger spatial scale than landslides and 

appear at scales of several hundreds of meters or 

kilometers. The sizes of the filters we tried were 500 

m, 1000 m, 2000 m, and 3000 m. We chose a filter 

size of 2000 m because it can detect the area of the 

interference fringes with the possibility of 

landslides, as in the case of no filters, and can 

remove interference fringes caused by atmospheric 

air. Fig. 4 shows examples of differential 

interferograms for a case where the global error 

removal filters are applied and a case where they are 

not applied. In Fig. 4(b), the global interference 

fringes have been removed from the image in Fig. 

4(a). There is nearly no change in the color 

gradation of the interference fringes with the 

possibility of landslides, as seen in the enlarged 

views of Fig. 4. 
In addition, we used differential interferograms 

for learning by classifying the phase differences 

from −π to +π into 16 color gradation steps (Fig. 4). 

 
Fig. 3 Processing flow of DInSAR 

Registration

SAR Interferometry

Flattening and Subtraction 
of topographic phase

Phase  emphasis filter

Global error removal 
filter

Map projection
( Orthorectify)

Master image Slave image

DEM

Interferogram Differential
Interferogram

Orthorectified  differential 
interferogram

 
Fig. 2 Map of observed area of differential interferogram used 

for training data  

 
Fig. 4 Examples of differential interferograms (a) without 

global error removal filters and (b) with global error removal 

filters 
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Table 2 List of observation data for the differential interferograms used for training data 

Orbit
number

Center frame
number

Master Slave
Orbit

number
Center frame

number
Master Slave

404 760 25/10/2007 17/06/2010 24/06/2007 09/08/2007
12/09/2006 17/09/2008 24/06/2007 26/06/2008
05/05/2009 05/08/2009 09/11/2007 11/05/2008
05/05/2009 05/11/2009 26/03/2008 17/08/2010
23/03/2010 08/05/2010 26/09/2008 11/02/2009
01/07/2007 16/08/2007 29/09/2009 14/11/2009
01/07/2007 01/10/2007 08/10/2006 13/07/2008
01/07/2007 03/07/2008 08/01/2007 13/10/2008
01/07/2007 06/10/2009 11/10/2007 03/03/2010
03/07/2008 21/08/2009 11/10/2007 18/04/2010
03/07/2008 06/10/2009 11/01/2008 18/04/2010
18/08/2008 06/07/2009 11/01/2008 03/06/2010
03/10/2008 06/07/2009 13/07/2008 16/07/2009
24/05/2010 24/08/2010 16/07/2009 16/10/2009
24/05/2010 09/10/2010 03/03/2010 19/07/2010
09/07/2010 24/08/2010 18/04/2010 19/10/2010
09/07/2010 09/10/2010 03/06/2010 03/09/2010
05/11/2007 21/12/2007 03/06/2010 19/10/2010
21/12/2007 22/03/2008 19/07/2010 19/10/2010
07/08/2008 22/09/2008 08/10/2006 08/01/2007
05/11/2007 07/05/2008 08/10/2006 13/07/2008
21/12/2007 22/03/2008 11/07/2007 26/08/2007

409 710 20/07/2008 07/09/2009 11/07/2007 11/10/2007
18/07/2007 20/07/2008 11/07/2007 11/01/2008
18/07/2007 18/10/2007 11/07/2007 01/12/2009
02/09/2007 18/10/2007 26/08/2007 11/01/2008
20/07/2008 07/09/2009 26/08/2007 16/01/2010
20/07/2008 23/10/2009 26/08/2007 03/03/2010
20/10/2008 07/03/2009 11/10/2007 11/01/2008
23/07/2009 07/09/2009 11/10/2007 26/02/2008
07/09/2009 23/10/2009 11/10/2007 03/03/2010
25/04/2010 10/09/2010 11/10/2007 18/04/2010
10/06/2010 26/07/2010 11/10/2007 03/06/2010
10/06/2010 10/09/2010 11/01/2008 03/03/2010
10/09/2010 26/10/2010 11/01/2008 18/04/2010
06/07/2007 21/08/2007 11/01/2008 03/06/2010
21/08/2007 06/10/2007 13/07/2008 28/02/2009
26/08/2009 11/10/2009 13/07/2008 16/07/2009
26/08/2009 26/11/2009 13/07/2008 16/10/2009
29/05/2010 14/07/2010 28/08/2008 13/10/2008
14/07/2010 29/08/2010 16/10/2009 18/04/2010
29/08/2010 14/10/2010 16/10/2009 03/06/2010
14/10/2010 29/11/2010 01/12/2009 18/04/2010
06/07/2007 11/10/2009 01/12/2009 03/06/2010
21/08/2007 11/10/2009 16/01/2010 03/06/2010
23/05/2008 29/08/2010 03/03/2010 03/09/2010
23/05/2008 14/10/2010 18/04/2010 03/09/2010
08/06/2007 24/07/2007 18/04/2010 19/10/2010
08/06/2007 24/10/2007 03/06/2010 19/10/2010
08/06/2007 29/10/2009 19/07/2010 19/10/2010
24/07/2007 13/06/2009 23/12/2006 30/09/2009
24/07/2007 29/10/2009 26/12/2007 18/08/2010
24/10/2007 10/06/2008 23/12/2006 30/09/2009
24/10/2007 29/10/2009 10/08/2007 30/09/2009
13/06/2009 29/10/2009 26/12/2007 18/05/2010

26/12/2007 18/08/2010
28/08/2006 31/08/2007
13/10/2006 18/07/2008
13/01/2007 03/12/2008
16/10/2007 08/03/2010
16/10/2007 23/04/2010
16/10/2007 08/06/2010
01/12/2007 08/03/2010
01/12/2007 23/04/2010
01/12/2007 08/06/2010
16/01/2008 23/04/2010
16/01/2008 24/07/2010
14/01/2007 17/01/2008
09/06/2010 25/07/2010
09/06/2010 09/09/2010
25/07/2010 09/09/2010
25/07/2010 25/10/2010

Area
Observed area Observation date

Mt. Gassan
58 2840

Northern
Nagano

408 710

61 2880

Mt.
Hakusan

411 710

63 2890

61 2890

409 720

Area
Observed area Observation date

Kii
Peninsula

413 660

414 660

414 670

64 660

64 2940

Eastern
Kochi

417 660

68 2940
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2.3 Classes of training data 

For the CNN model, we used two classes of 

training data, i.e., "landslide candidates", meaning 

interference fringes where landslides are likely to 

occur, and "others", areas detected in a random 

manner from areas other than the landslide 

candidates in the differential interferograms. Out of 

the 127 differential interferograms, we used 54 

samples as landslide candidates (included in 51 

differential interferograms). These samples were 

detected as possible candidates for locations where 

landslides could occur based on interference fringes 

detected on the slopes at multiple different times 

and on the existence of microtopography formed by 

landslides, as in the expert technique. Interference 

fringes representing landslide candidates are 

characterized by successive changes in color 

gradation as well as step-wise differences in the 

color gradation around the interference fringe 

[Geospatial Information Authority of Japan, 2011]. 

For others we sampled several locations at 

random from areas other than the landslide 

candidates from the 127 differential interferograms. 

Differential interferograms are expected to include 

interference fringes caused by various factors on 

ground surfaces with different gradients. Therefore, 

it is necessary to evenly prepare the model learning 

the features of the interference fringes of the slopes 

and flatlands. When the slopes and flatlands are 

defined to have an average gradient of 15 degrees or 

more or less than 15 degrees, respectively, slopes 

accounted for 37% and flatland accounted for 63% 

of the differential interferograms classified as 

others. The division between slope and flatland was 

set to 15 degrees (on a 1 km mesh) considering the 

lower limit value of the average relief energy of 1 

km2 in the mountainous area is 300 m [Suzuki, 

2000a] and the value of the sedimentary topography 

due to debris flow e.g. the maximum inclination of 

sedimentary terrains such as alluvial fans belonging 

to flatlands is 15 degrees [Suzuki, 2000b]. We 

confirmed that the ratios of the slopes and the 

flatlands sampled at random in the others class were 

equivalent. Note that the elevation/gradient data of 

the 1-km mesh of the National Land Numerical 

Information archived by the National Spatial 

Planning and Regional Policy Bureau, MLIT [2011] 

was used for the average gradient. 

For these training data, images were cut into 

small areas (150 × 150 pixels = 17.64 km2 each) to 

be used for learning. The size of the small areas was 

set so that the landslide candidate interference 

fringes used for learning included those areas as 

well as the margins to include the information near 

the fringes. 

 

2.4 Learning method and dataset 

To evaluate the classification performance of the 

trained CNN model, it is necessary to divide the 

data for training and testing. However, the number 

of data in the landslide candidate class is small and 

the data for testing are limited; therefore, there was 

a concern that the validity of the validation result 

would be low. Accordingly, we used a k-fold 

cross-validation to maximize the use of the limited 

data and evaluate the generalization of the model. In 

this method, part of the data, which are divided into 

k pieces, is analyzed and the analysis result is 

verified using the remaining data. Then, the validity 

of the analysis is verified by averaging the k 

validation results. In this study, dividing the all data 

into five groups, four of which are used for training 

while the remaining group is used for testing, we 

conducted the training and validation five times in 

total by changing the combination of groups each 

time (cv1–cv5), as shown in Fig. 5. The number of 

divisions of data was determined taking into 

consideration the time required for validation. 

In addition, to evaluate the performance of the 

model according to the difference in the number of 

training data, the 127 differential interferograms 

were divided into two groups, Dataset A and 

Dataset B. Dataset A consists of 107 differential 

interferograms and 42 landslide candidate samples. 

Dataset B consists of 127 differential interferograms 

(Dataset A plus 20) and 52 landslide candidate 

samples (Dataset A plus 12). Based on this, we 

prepared the training data (Table 3) and test data 

(Table 4) to perform the intersection validation five 

times. The number of landslide candidate data in the 

one-time training is 33 or 34 samples for Dataset A 

and 42–44 samples for Dataset B. Because there 

were few landslide candidate interference fringes for 

use as training data, there was a concern about the 

possibility of overlearning in the CNN model for the 

 
Fig. 5 The datasets used for cross-validation 

A B C D E

All data : 5 groups

Training data: 4 groups Test data: 1 group

Combination of data sets by cross-validation 

A B C D E
[Training data] [Test data]

cv1
cv2
cv3
cv4
cv5

A B C E D

B C D E A

A B D E C
A C D E B
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limited training data. It is generally desirable for the 

training data to represent the actual data space of the 

learning object. However, in this study, the number 

of landslide candidate interference fringes is small 

and the directions and positions in which the 

interference fringes appear are limited. Accordingly, 

we padded the numbers of training data, via 

rotation, reversal, and parallel movements, to 40,000 

for Dataset A and to 5,000 for Dataset B so that the 

interference fringes in the interferograms have 

different directions and positions (Table 3). For 

rotation padding, the interferograms were rotated at 

random based on the rotation angle θ (0° ≤ θ < 

180°). For reversal padding, they were vertically, 

horizontally, and vertically and horizontally 

reversed. For parallel movement padding, they were 

selected randomly within the scope of −10 to +10 

pixels in the X-axial and Y-axial directions of 

images. The same numbers of other data and 

landslide candidate data were sampled. 
In addition, test data were prepared from image 

data other than training data (Datasets A' and B' in 

Table 4). 

We created CNN models that trained Dataset A 

(CNN-A) and another CNN model that trained 

Dataset B (CNN-B).  

 

2.5 Evaluation index of the classification 

performance 

The classification performance of the trained 

CNN models were evaluated using the following 

method. First, we evaluated the performance 

demonstrated when the sample data for testing 

(Table 4) was classified into each class using the 

trained CNN models. Next, from the differential 

interferograms including the samples of each class 

shown in Table 4, we cut out small area images of 

150 × 150 pixels at intervals of 10 × 10 pixels and 

evaluated the results interpreted by the CNN models 

(Fig. 1(b)). When the classification result by the 

CNN models for the class of test data is correct, it is 

indicated as true positive (TP) and true negative 

(TN), and in case of error it is indicated as false 

positive (FP) and false negative (FN) (Table 5). 

As indices for evaluating the classification 

performance, we used the recall, precision, and 

break even point (BEP). The recall value represents 

the ratio of the data classified by the CNN models as 

landside candidates to the data that are actually 

landside candidates (Table 5, Eq. (1)). The 

precision value represents the ratio of the data that 

are actually landside candidates to the data classified 

by the CNN models as landside candidates (Table 

5, Eq. (2)). The recall and precision values are 

generally in a trade-off relationship; therefore, we 

used BEP to evaluate the classification performance 

when they are balanced. BEP is the value at which 

the recall equals the precision when the threshold to 

the probability value of the landside candidates class 

is raised or lowered. In this study, the recall and 

precision are calculated when the threshold value is 

varied in increments of 0.01 and the average value 

of the precision between the two points where the 

magnitude relationship between the recall and the 

precision is reversed is taken to be the BEP. 

 

3. RESULT 

 
3.1 Classification result of the test data 
 Table 6 shows the result of the classification of 

Table 5 Evaluation index of the classification performance 

 

Class of test data 

Landslide 
candidate 

Other 

Classification 
result 

Landslide 
candidate 

True Positive  
(TP) 

False Positive 
(FP) 

Other 
False Negative 

(FN)) 
True Negative 

(TN) 

 

Recall = TP/(TP+FN)          (1) 
Precision = TP/(TP+FP)        (2) 

Table 3 Number of samples for each class used for training 

 

Table 4 Number of samples for each class used for testing 

 

Class cv1 cv2 cv3 cv4 cv5

Dataset 

A’

Landslide 

candidate 9 9 8 8 8

Other 1,000 1,000 1,000 1,000 1,000

Dataset 

B’

Landslide 

candidate 11 11 11 11 11

Other 1,500 1,500 1,500 1,500 1,500
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the test data in Table 4 from models created using 

cv1–cv5 as training data in Datasets A and B in Table 

3. Note that, because the numbers of test data 

between the classes are balanced in general 

classification evaluation, we conducted 

normalization (total number of test data/number of 

classes) for the evaluation result of the classification 

of the test data. Here, the validation was conducted 

for three cases with different combinations of the 

model and classification data. It is conceivable that the 

model CNN-B including the same training data as the 

model CNN-A learns features in a similar way. 

Validation against Dataset A’ for the classification 

using model CNN-B was not performed because it is 

similar to Case 1 in Table 6. 

  The recall values of cv1–cv5 for each model 

range from 72.7% to 100%, the precision values 

range from 99.2% to 100%, the BEP values range 

from 91.9% to 100%, and the performance of cv1–

cv5 varies. Because it is difficult to evaluate the 

detection method in this study in the validations of 

cv1–cv5, we believe that it is appropriate to take an 

average value of the five validation results for each 

model. 

The average value of the five validations for each 

model and the classification was 95.3% for recall, 

99.8% for precision, and 99.8% for BEP in Case 1 

of Table 6. In Case 2, the recall value was 83.5%, 

the precision value was 99.7%, and the BEP value 

was 96.2%. In Case 3, the recall value was 90.9%, 

the precision value was 99.5%, and the BEP value 

was 99.4%; each of which was lower than the 

comparable values in Case 1. 
 

 

 

3.2 Result of the interpretation of the differential 

interferograms 
Table 7 shows the result of the classification 

when the differential interferograms were 

interpreted using the trained CNN models. In Case 1 

of Table 7(a), the recall value was 100% and the 

precision value was 3.1%, both of which were the 

highest values compared to the other cases. In Case 

3, the recall value was 94.5%, higher than in Case 2, 

and the precision value was 1.5%, the lowest value 

of the precision seen. 

Fig. 6 shows an example of an interpretation 

result. We created an interpretation result map 

considering that the center of each small area image 

with an area of 10 × 10 pixels corresponds to the 

interpretation result of the small area images. Many 

of the fringes detected as landslide candidates from 

the interpretation result (Fig. 6 (b)), as detected by 

the CNN models, had an area smaller than landslide 

candidates used for the training data. For 

interference fringes with small areas, it is difficult 

even for experts to distinguish them as landslide 

candidates or as others. 

Table 6 Evaluation result of classification performance of CNN 

models 

 

Case Model
Validation 

data

Evaluation 

Index
cv1 cv2 cv3 cv4 cv5 Average

1 CNN-A
Dataset

A’

TP 448.4 504.5 504.0 441.0 504.0 －

FN 56.1 0.0 0.0 63.0 0.0 －

FP 2.0 1.5 1.0 0.0 1.5 －

Recall 88.9 100 100 87.5 100 95.3

Precision 99.6 99.7 99.8 100 99.7 99.8

BEP 99.6 100 99.9 99.7 100 99.8

2 CNN-A
Dataset

B’

TP 618.1 686.8 618.1 549.5 679.5 －

FN 137.4 68.7 137.4 206.0 75.5 －

FP 2.0 3.0 1.5 0.5 2.5 －

Recall 81.8 90.9 81.8 72.7 90.0 83.5

Precision 99.7 99.6 99.8 99.9 99.6 99.7

BEP 95.8 98.5 91.9 99.3 96.8 96.3

3 CNN-B
Dataset

B’

TP 618.1 755.5 618.1 686.8 755.0 －

FN 137.4 0.0 137.4 68.7 0.0 －

FP 3.5 6.0 2.5 2.0 5.0 －

Recall 81.8 100 81.8 90.9 100 90.9

Precision 99.4 99.2 99.6 99.7 99.3 99.5

BEP 99.0 99.5 99.0 99.7 99.9 99.4

Table 7 Evaluation result of detection performance of CNN 

model 

(a) Size filtering not applied 

 
(b) Size filtering applied 

 

Case Model
Validation 

data

Evaluation 

Index
cv1 cv2 cv3 cv4 cv5 Average

1 CNN-A
Dataset

A’

TP 9 9 8 8 10 －

FN 0 0 0 0 0 －

FP 319 291 284 288 222 －

Recall 100 100 100 100 100 100

Precision 2.7 3.0 2.7 2.7 4.3 3.1

2 CNN-A
Dataset

B’

TP 10 10 9 10 11 －

FN 1 1 2 1 1 －

FP 344 357 375 495 308 －

Recall 90.9 90.9 81.8 90.9 91.7 89.2

Precision 2.8 2.7 2.3 2.0 3.4 2.7

3 CNN-B
Dataset

B’

TP 9 9 8 7 10 －

FN 0 0 0 1 0 －

FP 700 658 677 320 573 －

Recall 100 100 90.9 81.8 100 94.5

Precision 1.4 1.4 1.3 1.7 1.6 1.5

Case Model
Validation 

data

Evaluation 

Index
cv1 cv2 cv3 cv4 cv5 Average

1 CNN-A
Dataset

A’

TP 9 9 8 8 10 －

FN 0 0 0 0 0 －

FP 236 197 207 199 158 －

Recall 100 100 100 100 100 100

Precision 3.7 4.4 3.7 3.9 6.0 4.3

2 CNN-A
Dataset

B’

TP 10 10 9 10 11 －

FN 1 1 2 1 1 －

FP 251 242 282 328 231 －

Recall 90.9 90.9 81.8 90.9 91.7 89.2

Precision 3.8 4.0 3.1 3.0 4.5 3.7

3 CNN-B
Dataset

B’

TP 9 9 8 7 10 －

FN 0 0 0 1 0 －

FP 489 428 457 221 386 －

Recall 100 100 90.9 81.8 100 94.5

Precision 2.0 2.1 1.9 2.5 2.3 2.1
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Therefore, we provided size filtering to remove 

the landslide candidates of less than 10 × 10 pixels 

(approx. 0.078 km2), which is less than the 

minimum area (0.16 km2) of landslide candidates in 

the training data, from the interpretation result of the 

CNN model. The index value and predicting map in 

this case is shown in Table 7(b) and Fig. 6 (c), 

respectively. As a result, in comparison with the 

case where no size filtering is applied (Table 7(a)), 

the recall value was the same but the precision value 

slightly improved for all cases. Because the filter 

size is smaller than the minimum area of the 

landslide candidates used for the training data, the 

number of true positives in Eq. (2) (Table 5) does 

not change. Meanwhile, interference fringes with a 

small area included in others were rejected by the 

filter and the number of false positives was reduced, 

so the precision improved. 
 

4. DISCUSSION 
 

4.1 Comparison of the validation result for each 

case 

As a result of the classification of the test data in 

Table 6, others and landslide candidates were 

classified accurately in each case.  

On the other hand, the interpretation result of 

Table 7 is a high recall but low precision. 

Comparing the results of each case in Table 7; the 

value of the recall is lower in Case 2 than in Cases 1 

and 3. Fig. 7 shows samples of landslide candidates 

included in the dataset used for training the CNN 

models. Panels (a) and (b) in Fig. 7 are included in 

Datasets A and B but panels (c) and (d) are included 

only in Dataset B. In Case 2, Dataset B' includes 

samples of landslide candidates having 

characteristics different from the training data 

(Dataset A) used for modeling (Figs.7 (c) and (d)). 

Therefore, these samples could not be detected. In 

Case 3, the value of the precision was the lowest. 

Samples of landslide candidates in Dataset B 

include some patterns of interference fringes that are 

difficult to distinguish from those in others (Figs.7 

(c) and (d)). This likely caused misdetections of 

interference fringes in the others class. Even though 

in Case 3 a model with more training data than in 

Fig. 6 An example of predicting map 

(a) DInSAR imagery, (b) Predicting map (Not applied size filtering), (c) Predicting map (Applied size filtering) 

 
Fig. 7 Sample of Landslide candidate: (a) and (b) Dataset 

A, (c) and (d) Dataset B 

：Landslide candidate interference fringe

Color Step

(b)

(c) (d)

(a)
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Case 1 was created, the characteristics of the added 

landslide candidate interference fringes, rather than 

the increased amount of training data, might have 

affected the image classification performance. 
 

4.2 Detection trends of models 

 Landslide candidate samples in the test data of 

Case 3 in Table 7 have one or two candidate sites in 

a single differential interferogram. Conversely, in 

the interpretation result of Case 3, landslide 

candidate interference fringes detected by the 

CNN-B model averaged 46 sites in a single 

differential interferogram. In these areas, the ratios 

of the slopes, which were defined as 15 degrees or 

more in gradient, and the flatlands, which were 

defined as less than 15 degrees were 43% 

(approximately 20 sites) and 56% (approximately 26 

sites), respectively. Because the ratios of the slopes 

and flatlands in the test data were 33% and 67%, 

respectively, the detection ratios of the interference 

fringes per unit area are higher on slopes. 
 For the sites misdetected on the flatlands and 

slopes, it is difficult to visually detect clear 

differences in the patterns of their respective 

interference fringes. However, compared to the 

flatlands, differences are more likely to appear on 

slopes where continuous interference fringes 

recognized as landslide candidates are characterized 

by step differences from neighboring areas. In 

addition, another cause could be the misdetection of 

noise as landslide candidate interference fringes; 

noise occurs because the coherence is lower on the 

slopes than on the flatlands. 
 

5. CONCLUSIONS 
 

In this study, we verified the possibility of 

detecting landslides from differential interferograms 

using CNN models. As a result, it was found that 

CNN models can detect interference fringes having 

the possibility of landslides with high 

reproducibility with recall values of approximately 

90% in the validation case. However, landslide 

candidate interference fringes were detected in 

numbers larger than that of the training data, which 

shows that the precision is low. The image 

classification performance of this CNN model might 

be affected by the patterns of the landslide candidate 

interference fringes in the training data. In addition, 

interference fringes detected in the interpretation by 

the CNN model are more likely to be detected on 

slopes than on flatlands. 
Therefore, CNN models with high recall values 

may be effective as a means of detecting 

interference fringes with the possibility of landslides 

from differential interferograms regularly observed 

over a wide area. However, the misdetection of 

noise is likely to occur on slopes because many 

landslide candidates are detected on slopes, which 

have lower coherences than flatlands. Therefore, it 

is necessary to further narrow down the interference 

fringes that are likely to be landslide movements 

from the landslide candidates detected by the CNN 

models based on features of the topography and 

geology related to landslides. Then, this model will 

be able to contribute to the efficient risk 

management of sediment disasters by prioritizing 

sites where on-site surveys and observations should 

be conducted. 
However, because this study did not have 

sufficient training data for landslide candidates, it is 

difficult to say that a CNN models with high 

generalization have been established. Therefore, to 

improve the model performance, training data on 

interference fringes with various characteristics need 

to be increased. However, it is not easy to prepare a 

large amount of interference fringes with the 

possibility of landslides as training data. In this 

study, only differential interferograms were used as 

training data. However, it is sometimes difficult to 

detect interference fringes with the possibility of 

landslides only from differential interferograms. In 

reality, when experts detect interference fringes with 

the possibility of landslides, they also consider the 

topography and other characteristics of the site. 

Therefore, the use of other data such as topography 

for learning in addition to differential interferograms 

may enable more accurate detections of sites with 

the possibility of landslides. 

Our challenge for the future is to study 

combinations of training data and learning methods 

appropriate for the detection of sites with the 

possibility of landslides and therefore improve the 

accuracy of the CNN models. 
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