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This paper reports the efforts we made in the past four years to develop an auto-nowcasting system of landslide hazards, 

as well as the accuracy assessment of the I-Lan case in 2012 and 2013. This system uses a nondeterministic geometric 

mean model of landslide susceptibility index (LSI) to integrate three grid-based preparatory factors: slope, aspect, 

lithology, as well as one region-based factor: total flux. The weight of each preparatory factor is calculated by excluding 

the union of all shaded areas in the time series of satellite observations. The coefficients of the nondeterministic geometric 

mean model are determined by maximizing the positive right and negative right regions, and minimizing the missing and 

false alarm regions. By assuming that landslide hazard index (LHI) is related to LSI and accumulated precipitation (AP), 

the event-based inventory and AP for Typhoon Saola (11 July 2012) and Typhoon Soulik (12 July 2013) are used to 

develop and validate the LHI of I-Lan. Results show that the overall accuracy is as high as 85%. This LHI model has been 

implemented through SWCB Sediment-related Disaster Geospatial Information System (SDGIS) to provide an auto-

nowcasting service with a map of five-level warning updated every hour. 
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1. INTRODUCTION 

 
Landslide is one of the most common and 

dangerous natural hazards in mountainous regions, 

which alone caused a total death toll of at least 32,322 

in 2,626 events between 2004 and 2010 [Petley 

2012]. To minimize human and material losses, 

landslide-related maps are widely recognized to be 

crucial in implementing disaster prevention and 

mitigation strategies [Hervas, et al. 2003]. With the 

map of landslide susceptibility, for example, various 

measures can be implemented to build engineering 

structures and plan evacuation routes. Despite of the 

fact that different levels of assumptions and 

uncertainties are associated with different methods, 

the bottom line is to get a few hours of warning at 

least, in order to secure enough time of evacuation. 

This requires the nowcasting technique that provides 

a reliable prediction of the very near future from a 

large quantity of data series. This paper reports the 

efforts we made in the past four years to develop an 

auto-nowcasting system of landslide hazards, as well 

as the accuracy assessment of the I-Lan case. 

2. METHOD 
 

2.1 Shadow inventory and its influences on 

landslide susceptibility models 

Landslide susceptibility describes the relative 

spatial likelihood for the occurrence of landslides, 

based on the landslide inventory prepared from 

space-borne or air-borne optical imagery. Most of the 

landslides are occurred in mountainous areas, where 

the imagery are acquired with some incline angles 

and the sun is not always in the nadir direction. 

Therefore, shadow is inevitable on these optical 

imageries. Fig. 1 gives one example of mapping 

landslides triggered by the extreme rainfall of 

Typhoon Morakot in August of 2009. Most of the 

aftermath images available were acquired in the 

winter of 2009 or in the spring of 2010, because of 

the urgent needs to map the landslides and evaluate 

the damage. During that period of time, however, the 

sun elevation is low in the sub-tropical zone and the 

shadows could occupy as high as 30% of the entire 

image over the mountainous area, such as the 

example shown in Fig. 1(b). 
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Fig. 1 Example of mapping landslides (yellow polygons) 

triggered by the extreme rainfall of Typhoon Morakot in August 

of 2009, using the Formosat-2 imagery acquired in (a) 2008, (b) 

2009, and (c) 2010. A misleading conclusion of less landslide 

areas after Typhoon Morakot would be drawn, if the shadow 

inventory is not taken into account with special care. 

 

The landslide areas delineated from the 2008 

imagery (yellow polygons in Fig. 1a) are even larger 

than the landslide areas delineated from the 2009 

imagery (yellow polygons in Fig. 1b). As a result, a 

misleading conclusion of less landslide areas after 

Typhoon Morakot would be drawn, if the shadow 

inventory is not taken into account with special care. 

The landslide areas delineated from the 2010 imagery 

(yellow polygons in Fig. 1c) clearly illustrates the 

destruction level of Typhoon Morakot: the landslide 

areas of 2010 are still much larger than the one of 

2008, even after one year of recovery. 

Two simple approaches were proposed and 

validated to compensate the error caused by shadows 

[Lin, et al. 2013], which requires a detailed shadow 

inventory prepared from the Expert Landslide and 

Shaded Area Delineation System [Liu 2015]. Our 

recent study evaluates the possible errors affecting 

landslide susceptibility models (LSMs) by neglecting 

the shadow inventory. We concluded that the weight 

of each preparatory factor pf should be calculated by 

excluding the union of all shaded areas in the time 

series of satellite observations. 

 

2.2 A new region-based preparatory factor for 

landslide susceptibility models: the total flux 

Current LSMs are mostly based on conditions 

represented by the data contained within each 

gridded cell, namely grid-based preparatory factor. 

Although drainage distance has been used to account 

for landslides occurring on slopes adjacent to main 

streams, Liu et al. [2016] demonstrated that drainage 

distance is not the best region-based preparatory 

factor, because the cells in the same drainage distance 

buffer zone may experience different total water flux 

as tributaries join the main stream when water flows 

downstream. Taking into account of the topography 

and hydrology conditions upstream of each gridded 

data cell, a new region-based preparatory factor total 

flux (TF) was proposed to represent the total flux of 

water in the stream. TF is proved to be strongly 

associated with the occurrence of landslides and is a 

good region-based preparatory factor for LSM [Liu, 

et al. 2016].  

As suggested by Liu et al. [2004] that the 

preparatory factors should be obtainable and 

applicable anywhere, and reviewed by Süzen et al. 

[2011] that slope, aspect and lithology are the most 

influential natural factors, we build up a standard 

LSM that covers the entire country. Note that two 

cell-based factors, slope (Fig. 2a) and aspect (Fig. 

2b), and the region-based factor, TF (Fig. 2c) are all 

derived from a digital elevation model (DEM) made 

available by the Ministry of Interior Affairs of 

Taiwan. The lithology map is provided by the Central 

Geological Survey of Taiwan at the scale of 

1/250,000 (Fig. 2d). Detailed description of these 

preparatory factors can be referred to the project 

report [GEODAC 2014].  

Note that only the mountainous regions of Taiwan 

are taken into consideration, which is about two-third 

of Taiwan. There are still some rooms of 

improvement of these preparatory factors. For 

example, the 5-m resolution DEM was produced 

before Typhoon Morakot in 2009, which might not 

be able to represent the current situation of surface 

elevation in some area. The lithology map provided 

at the scale of 1/250,000 is also too coarse comparing 

to the other data. 

(c) 

(b) 

(a) 
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Fig. 2 Preparatory factor for landslide susceptibility models (a) 

slope, (b) aspect, (c) total flux, and (d) lithology. 

 

2.3 Landslide susceptibility model based on 

geometric mean with indeterminate coefficients 

LSM computes landslide susceptibility index 

(LSI) at each cell j of gridded raster data that indicates 

the susceptibility based on preparatory factors 

weighted according to importance. After excluding 

the union of all shaded areas in the time series of 

satellite observations and weighting each preparatory 

factor by the landslide inventory, two types of LSMs 

are usually employed, i.e., the arithmetic mean model 

[Lee and Talib 2005, Yilmaz 2009] 
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Nguyen and Liu 2014] 
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where m is the number of pf considered in LSI, W is the 

weight of pf at interval i defined as the frequency ratio 

[Liu, et al. 2016]. For one particular pfk, ik is the 

corresponding interval of pfk at that cell j. Liu et al. 

[2004] discussed and recommended the geometric mean 

model (Eq. 2), which implies that the contribution of 

each pf is the same. This restriction can be removed 

by introducing a set of nondeterministic coefficients 

and searching an optimized value for each 

coefficient, namely the nondeterministic geometric 

mean model 

)3()(
1

)(



m

k

C

ipf
k

kk
WjLSI  

Note that Eq. (3) requires a well-defined criteria of 

optimization, which motivates us to revisit the 

evaluation indicators of landslide susceptibility 

model as described as follows. 

 

2.4 Revisit the evaluation indicators of landslide 

susceptibility model 

The percentage of landslide occurrence (POLO) 

and its cumulative (CPOLO) are commonly used as 

indicators to measure the performance of landslide 

susceptibility model. To evaluate the performance of 

landslide prediction or issue a warning, however, 

requires a fixed value of threshold that cannot be 

determined directly and solely from the CPOLO 

curve. Following the practice in weather forecast, 

two CPOLO curves are plotted within (yellow line) 

and outside (green line) the landslide areas, 

respectively, resulting in four regions of prediction: 

positive right, negative right, missing and false alarm 

(Fig. 3). Maximizing the first two (76.93%, 75.17%) 

and minimize the last two regions (23.07%, 24.83%) 

enables us to explicitly determine a new indicator that 

is especially suitable for determining the threshold: a 

value of 0.0125 for the case of I-Lan and the 

nondeterministic geometric mean model is 

)4(2384.0

lithology

2562.0

TF

2712.0

aspect

2746.0

slope WWWWLSI   

A detailed explanation of this new indicator, as well 

as Eq. (4) can be referred to the project report. 

 
Fig. 3 Landslide susceptibility index of I-Lan calculated by using 

the nondeterministic geometric mean model (Eq. 3).  

(c) 

(b) (a) 

(d) 

Positive Right 
Negative  

Right 

Miss 

False Alarm 

-338-



 

 

 

 

3. RESULTS 
 

 To attain the goal of nowcasting landslide 

hazards, the contribution of precipitation needs to be 

quantified first. Since the events of Typhoon and 

landslide are frequently reported in I-Lan, we prepare 

the event-based inventory and calculate the 

accumulated precipitation (AP) for Typhoon Saola 

(11 July 2012) and Typhoon Soulik (12 July 2013), 

respectively, as shown in Fig. 4. 

 

 

  
Fig. 4 Accumulated precipitation (AP) for (a) Typhoon Saola (11 

July 2012), and (b) Typhoon Soulik (12 July 2013). 

 

By assuming that landslide hazard index LHI is 

related to LSI and AP by 

)5(APC
APLSILHI   

and employing the same technique of optimization 

using the event-based inventory of I-Lan of Typhoon 

Saola, a value of 0.0674 is obtained for CAP (Fig. 5a). 

This LHI model is then validated by using the AP and 

event-based inventory of Typhoon Soulik (Fig. 5b). 

Table 1 lists the accuracy in four regions of 

prediction: positive right, negative right, missing and 

false alarm. The overall accuracy is as high as 85%. 

By implementing this LHI model through SWCB 

Sediment-related Disaster Geospatial Information 

System (SDGIS) (http://246gis.swcb.gov.tw/) (Fig. 

6a), we provide an auto-nowcasting service with a 

map of five-level warning updated every hour (Fig. 

6b). Note this LHI model is only valid for I-Lan, since 

CAP is a regional parameter that needs to be determined 

from the actual event. 

 

 

 
Fig. 5 (a) Development of LHI model using AP and the event-

based inventory of I-Lan of Typhoon Saola (11 July 2012), and 

(b) Validation of LHI model using AP and the event-based 

inventory of I-Lan of Typhoon Soulik (12 July 2013). 

 

 

 
Fig. 6 (a) SWCB Sediment-related Disaster Geospatial 

Information System (SDGIS), and (b) an auto-nowcasting 

service with a map of five-level warning updated every hour. 

(b) 

(a) 

(b) 

(a) 

(b) 

(a) 
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Table 1 Accuracy report in four regions of prediction: positive 

right, negative right, missing and false alarm. (a) Development of 

LHI model using AP and the event-based inventory of I-Lan of 

Typhoon Saola (11 July 2012), and (b) Validation of LHI model 

using AP and the event-based inventory of I-Lan of Typhoon 

Soulik (12 July 2013). 

 Development Validation 

LHI threshold 0.06744 0.0588 

Positive Right (%) 91.62 84.73 

Negative Right (%) 82.71 85.81 

Miss (%) 8.38 15.27 

False Alarm (%) 17.29 14.19 

 

4. CONCLUDING REMARKS 
 

An auto-nowcasting system of landslide hazards 

has been developed for Taiwan, which uses a 

nondeterministic geometric mean model of LSI to 

integrate three grid-based preparatory factors: slope, 

aspect, lithology, as well as one region-based factor: 

total flux. The weight of each preparatory factor is 

calculated by excluding the union of all shaded areas 

in the time series of satellite observations. The 

coefficients of the nondeterministic geometric mean 

model are determined by maximizing the positive 

right and negative right regions, and minimizing the 

missing and false alarm regions. By assuming that 

LHI is related to LSI and AP, the event-based 

inventory and AP for Typhoon Saola (11 July 2012) 

and Typhoon Soulik (12 July 2013) are used to 

develop and validate the LHI of I-Lan. Results show 

that the overall accuracy is as high as 85%. This LHI 

model has been implemented through SWCB 

Sediment-related Disaster Geospatial Information 

System (SDGIS) (http://246gis.swcb.gov.tw/) to 

provide an auto-nowcasting service with a map of 

five-level warning updated every hour. 
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