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ABSTRACT  

Alpine hazards such as debris flows, landslides, snow avalanches and floods can cause apart from loss 

of life significant damage of the built environment and infrastructure. Since the possibilities for 

human intervention in the physical processes are limited risk reduction strategies additionally have to 

focus on physical vulnerability analysis, assessment and reduction of the elements at risk in order to 

reduce not only loss of life but also economic costs. Vulnerability assessment is a topic that is 

growing in importance also due to climate and environment change. Climate change influences the 

frequency and intensity of some events and the continuous development changes the spatial pattern of 

exposure and vulnerability. In this paper the growing importance of the assessment of physical 

vulnerability is highlighted through the introduction of a methodology to develop a vulnerability 

function for debris flows. The methodology is applied in South Tyrol, Italy. The final product can 

assist local authorities, emergency and disaster planners in decision making, cost benefit analysis of 

mitigation protection measures and assessment of potential costs of future events. Finally, 

recommendations for improved damage assessment that could enhance the quality of input data and 

thus the reliability of the function are made. The work presented in this paper has been carried out 

within the framework of an FP7 European project called MOVE (Methods for the Improvement of 

Vulnerability Assessment in Europe). 
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INTRODUCTION  

Alpine hazards such as debris flows, floods, snow avalanches, rock falls and landslides pose a 

significant threat to local communities. These natural processes can cause damage to lifelines, critical 

infrastructure, agricultural lands, housing, public and private infrastructure, but also loss of life. The 

assessment of the vulnerability of the built environment to these hazards is a topic that is growing in 

importance due to the impact of global change (including climate and environmental change) as well 

as changes of the society and the economic system. Moreover, our society and the public authorities 

have to meet the challenges of financial restrictions also in the field of hazard mitigation and risk 

reduction.  

In most studies concerning physical vulnerability assessment, vulnerability is perceived as “the degree 

of loss to a given element, or set of elements, within the area affected by a hazard. It is expressed on a 

scale of 0 (no loss) to 1 (total loss)” (UNDRO 1984). However, for the authors of the present study 

vulnerability is considered connected to a pre-existing condition that is related to those characteristics 

and properties of the elements at risk that increase their susceptibility to the impact of hazards. In a 

wider sense, vulnerability could be defined as “the characteristics and circumstances of a community, 
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system or asset that make it susceptible to the damaging effects of a hazard” (UNISDR 2009). It is a 

fact that a better understanding of vulnerability will lead to more effective risk assessment, emergency 

management and to the development of mitigation and preparedness activities that may reduce the 

loss of life and economic costs following a disastrous event. Therefore, a detailed investigation on the 

relation of the degree of loss and the intensity of the processes as well as on the identification of 

factors influencing this relation is presented. In this study the importance of physical vulnerability 

assessment is demonstrated through a case study in South Tyrol, Italy. The results of the case study 

are integrated in a general framework of vulnerability assessment and will be discussed critically.   

PHYSICAL VULNERABILITY ASSESSMENT FOR ALPINE HAZARDS 

The majority of the studies concerning mountain hazards focus on hazard assessment, modelling, 

monitoring and risk management. Vulnerability assessment of alpine hazards is a relative new field of 

research and the number of studies focusing on vulnerability assessment for these types of hazards, is 

limited. In a review of existing physical vulnerability assessment methods for alpine hazards 

Papathoma-Köhle et al. (2011) identify the gaps and difficulties of existing vulnerability assessment 

methodologies and point out the future needs for vulnerability assessment to alpine hazards, which 

can serve as a tool for effective emergency and disaster management. In more detail, Papathoma-

Köhle et al. (2011) suggest that there is (i) a lack of common language between scientists, (ii) many 

difficulties in the implementation of the existing methodologies (e.g. data availability, time 

consumption), (iii) differences between them regarding their scale, (iv) the consideration of the 

hazardous phenomenon and its properties, (v) the consideration of important vulnerability indicators 

and (vi) the use of technology such as GIS and remote sensing. The development of vulnerability 

functions is one of the methods that have been used in the past for some mountainous hazards such as 

debris flows (Fuchs et al. 2007, Akbas et al. 2009), fluvial sediment transport (Totschnig et al. 2011) 

and snow avalanches (Wilhelm 1997, BUWAL 1999, Keiler et al. 2006). Although the method has a 

number of disadvantages, it provides a very good picture of the economic loss under different 

scenarios (intensity and development). It can also be used as a supporting tool for cost benefit analysis 

of structural protection measures.   

METHODOLOGY AND RESULTS FROM SOUTH TYROL 

In this paper, a methodology for the development of a vulnerability function for debris flows is 

presented. The function can be also used for the development of vulnerability functions for other 

alpine hazards, provided that the required data are available. Moreover, the same methodology can be 

also used theoretically for different elements at risk such as agricultural areas and open spaces or 

infrastructure. In this study the methodology is used for debris flow events that have affected 

buildings. The methodological steps can be seen in Figure 1.  
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Fig.1 The methodological steps and the data required for the development of the vulnerability function. The 

information required for the assessment of the degree of loss (object value, monetary damage) is indicated. 

 

The vulnerability function is a function of the intensity of the process and the degree of loss. In the 

absence of detailed information regarding the intensity of the process on individual buildings (e.g. 

debris flow height, velocity, impact pressure or time that the building remained under water and 

debris) and detailed damage on properties the required information had to be acquired from 

photographic documentation of a number of debris flow events and their consequences in South Tyrol 

(Figure 2). The data were made available by the Autonomous Province of Bozen/Bolzano - South 

Tyrol (Department 30) and the municipality of Martell (South Tyrol). The data included basic 

information regarding different events, photographic documentation of damaged buildings and some 

compensation data. Information regarding the exact damages of buildings and the intensity of the 

process on each building were not available. Although in the absence of detailed documentation of the 

damage, the photos can provide useful information regarding the intensity of the process and its 

consequences, there many uncertainties related to the use of photos form damage assessment. For 

example, the photos often show mainly external damages and not the interior of the building 

increasing the uncertainties of the methodology.   
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Fig.2  Location of the data (event documentation) used for the present study within the municipalities of South 

Tyrol (Source: Autonomous Province of Bozen/Bolzano - South Tyrol) 

 

Some buildings that have suffered damages during different events in South Tyrol can be seen in 

Figure 3. Using photographic documentation it is possible: 

 

• to assess the intensity of the debris flow on each building by estimating the height of the 

deposits and 

• to assess the damage pattern by analyzing the process impact on the building. 

 

The intensity of the process on individual buildings is expressed as deposit height. The height of the 

maximum debris and water flow can be assessed from the indicated marks on the building walls in 

relation to the building height and average height of the floors (e.g. according to Kaswalder (2009) the 

average height of a room in South Tyrol is 2.6m) . In some cases the debris has entered the building or 

even destroyed parts of it. The intensity of the process on the specific building is deduced by 

analyzing the deposit height and different consequences of a specific event. 

 

The degree of loss is expressed as the percentage of the value of the building that was lost due to the 

impact of the process. Therefore, the value of the building and cost of reconstruction have to be 

determined.  

Building values: The value of the building is estimated by the reconstruction value (standard 

prices/m
2
) for different building types and functions as they are also used for insurances purposes (c.f. 

e.g., Keiler 2004). For this study data for the element at risk (building use and size, photos) and 

reconstruction values were provided by local authorities (Province of South Tyrol and Municipality of 

Martell) that were  combined and adapted for the basement and the roof from the Austrian prices 

given in a study from Keiler (2004) and Keiler et al. (2006). 
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Reconstruction costs: The cost of the repair works that are required according to the damage that a 

building has suffered were taken from a report listing the reconstruction costs following a flood event 

taking as an example a typical South Tyrolean residential building of 100m
2
 building area and a 40m

2
 

basement (Kaswalder 2009). However, the impact of debris flows on a structure is not always 

identical to the impact of a river or a flash flood. In some cases, the debris may destroy walls 

that would need to be rebuilt. For this reason, information regarding wall reconstruction caused by 

the impact of the debris on the building was taken from an official catalogue of fixed base prices for 

civil engineering operations (Autonome Provinz Bozen 2010). 

 

 
Fig.3 Photos of damaged houses in South Tyrol (Source: Autonomous Province of Bozen/Bolzano – South 

Tyrol) 

 

By determining the intensity of the process and the degree of loss as described above and illustrated in 

Figure 1 the specific relation of intensity and degree of loss for each building could be represented as 

a point in a two-dimensional illustration in form of a scatter plot (Figure 4 and 5).  

 

The process intensity is plotted on the abscissa, and the degree of loss is plotted on the ordinate. In 

order to find functions that fit best to the data, a nonlinear regression approach, as outlined by 

Totschnig et al. (2011), was applied. The following cumulative extreme value distributions were 

tested: Weibull, Frechet and Log-Logistic. These distributions were modified to introduce further 

fittable parameters and had to fulfil the following mathematical requirements (Totschnig et al. 2011): 

 

• Vulnerability as the depending variable is defined in a both-sided confined interval [0,1]; 

• the distribution is continuous and monotonic increasing within the interval of its explaining 

variable (intensity); and 

• the explaining variable is defined either in a both-sided unconfined interval (-∞, +∞) or in a 

left-sided confined interval [0, +∞). 
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Apart from these distributions a logistic distribution was also tested. An unmodified Logistic 

distribution complies with the requirements mentioned above. However, the Logistic distribution does 

not go through the point of origin, i.e. the degree of loss is not equal to zero in case of zero intensity. 

The nonlinear regression approach used to find the unknown parameters of all the tested distributions 

applied a sequential quadratic programming algorithm based on a nonlinear least squares estimation. 

 

In Figure 4, the distributions based on the presented methodology are shown. The intensity parameter 

is hereby grouped in steps of 0.5 m. Due to the fact that the Logistic distribution does not go through 

the point of origin, the Weibull distribution (Eq. 1) was selected as best-fitting function, although the 

Logistic distribution showed a slightly higher coefficient of determination. The coefficient of 

determination of the Weibull distribution is equal to 0.786, where as the coefficient of determination 

of the Logistic distribution is equal to 0.796.  
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where V = vulnerability of the building and I = intensity in form of deposition height. 

 

 

Fig.4 Comparison of different vulnerability functions. Vulnerability values originating from the study sites and 

based on the presented methodology are indicated by blue dots. Based on the R2 and on the prerequisite that the 

function should go through point (0,0), the chosen best-fitting function to describe the range in the analyzed data 

is the Weibull function. 

In Table 1, the mathematical notation, the coefficient of determination and the interval of the 

explaining variable (intensity) of the tested distributions based on the presented methodology are 

summarised. 
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Tab. 1 Compilation of the tested distributions 

Distribution Mathematical notation Coefficient of 

determination 

Interval of the explaining 

variable 

Weibull 285.2

1
432.2

432.2
528.1

1

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
−

+
−

−=
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0.786 [0,+∞] 

Frechet 091.2
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)627.3036.2(1

1
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I

e
V  

0.796 (-∞,+∞) 

 

The vulnerability function in Figure 5 shows, as it was expected, that the larger the height of the 

debris deposit, the higher the degree of loss. The fact that the function becomes significantly steeper 

after the intensity of 1 m can be explained by the presence of windows or other openings that allow 

the material to enter the building and more damage to take place in the interior of the building. Total 

loss and need for total building replacement according to the function can be observed after the 

intensity of 1.7 m.  

 

 
Fig.5 Comparison of the best-fitting vulnerability function and the corresponding validation function. 

Vulnerability values based on the presented methodology are indicated by white circles and vulnerability values 

based on the validation data are indicated by black rhombi. 
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Individual cases of buildings with relatively high degree of loss for lower intensities can be attributed 

to significant destruction in the basement. The fact that some buildings have experienced low degree 

of loss and high process intensity can be explained by relative high building value due to a larger 

number of floors. 

 

A validation function was developed using real data concerning the compensation that was given to 

some property owners. The compensation data was provided by the Department of Domestic 

Construction of the Autonomous Province of Bozen/Bolzano - South Tyrol in Italian Lire of 1989 and 

it was later converted into Euro and indexed to 2009 values in order to be comparable with the results. 

However, as not all building owners were eligible for compensation, only 43 values of degree of loss 

calculated by the presented methodology were validated. Although the visual comparison (Figure 5) 

between the developed function and the validation function is satisfactory, in some cases, significant 

differences could not be explained by looking at the photographic documentation. Buildings that were 

not seriously damaged received compensation to be entirely rebuilt and in some cases buildings that 

were significantly damaged were only partially repaired. It was assumed that relocations of buildings 

that might not be clear in the compensation form or internal arrangements that were not clearly 

recorded accounted for these differences.   

DISCUSSION 

The resulting vulnerability function can provide the decision makers with detailed information 

regarding the costs of events for different process intensities in the future or under different 

development setting. The end user can use the function, not only to calculate the costs of a future 

event of a specific intensity but also to calculate the costs of an event if the setting of the built 

environment changes (e.g. removal of buildings or building of new settlements). Last but not least, the 

cost effectiveness of protection measures can also be demonstrated by using this function. Protection 

measures can change the intensity of a process on specific buildings and thus, their potential degree of 

loss and costs of reconstruction. Moreover, by adding information regarding the consequences of new 

events, the vulnerability function can be significantly improved and its reliability can be increased.  

 

Data availability was the most significant drawback of the study. Lack of detailed information 

regarding the consequences of past events on individual buildings led to a series of assumptions that 

increased the uncertainty of the results. In order to increase data availability and quality a new method 

of damage documentation should be introduced. The new documentation consists of two parts: the 

condition documentation form and the damage documentation form (Figure 6 and 7). The condition 

documentation form contains important information regarding the building that includes building 

specific characteristics such as its use, material, number of floors etc. and information regarding its 

surroundings, the surrounding vegetation and the presence of protection measures. The damage 

assessment documentation includes a detailed description of the damages (damage pattern) following 

an event such as information on whether material entered the basement or ground floor, recording of 

any broken windows and doors etc. as well as information regarding the intensity of the process. The 

new damage documentation form is user friendly (e.g. the user can record the damage pattern of the 

building and also the characteristics of the process in an easy and fast way) and does not require any 

special training or skills. The proposed documentation forms have not been validated yet, however, 

during a Stakeholder Workshop in Bozen, South Tyrol (17 June 2011) they were introduced to the 

relevant stakeholders (e.g. representatives of civil protection authorities, the department of hydraulic 

engineering, and other local authorities) receiving a very positive feedback.  

 

A future development of the present study would be the integration of the resulting function and 

documentation to a integrative tool that would have a dual function: a) it could assess the potential 

costs of future events under different scenarios and b) it could be used for the recording of new events 

and their consequences in order to improve the existing vulnerability function by the input of more 

data. Moreover, by collecting information regarding individual houses as it is suggested by the 

documentation form shown in Figure 6 the temporal pattern of the physical vulnerability of the 
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elements at risk can be identified. In other words changes regarding not only the location of buildings 

but also their individual characteristics through time can be recorded and changes in physical 

vulnerability through time can be visualised. Although the methodology is applied on a case study for 

debris flow events, the approach can be extended or modified to include more processes (e.g. snow 

avalanches, floods, landslides) and more elements at risk (e.g. agricultural areas, infrastructure). The 

resulting vulnerability function is not transferable to other places in the world where the dominant 

architecture, shape and quality of the buildings are different than the one in South Tyrol. However, 

the methodology itself is transferable and especially to places where detailed information regarding 

the consequences of the process on the built environment is limited, since it offers alternative ways to 

acquire this information.  

 

Fig. 6 The proposed condition documentation form 
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Fig.7 The recommended damage documentation form. The red lines at the top of figure indicate the debris 

direction and the part of the house which has been affected. The red line at the bottom figure indicates the 

location of the building on the slope. (FF: Fist floor, GF: ground floor, BS: basement) 
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CONCLUSION 

In the present study a valuable tool is provided that will enable stakeholders and relevant institutions 

to reduce risk and the consequences of natural disasters strengthening in such a way institutional 

vulnerability. Moreover, our recommendations for new documentation of events and damage 

assessment will increase the capacity of local actors to improve risk management, conceptualize 

strategies for vulnerability reduction and to conduct cost benefit analysis for mitigation measures. 

Finally, the results of the proposed methodology can help the estimation of future damage costs not 

only in the present climate and development setting but also taking into consideration climate change 

and changes in the socio-economic development. The methodology and results presented in this study 

emphasise the importance of the analysis, assessment and reduction of physical vulnerability.  
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