
 
 

UNCERTAINTY IN NATURAL HAZARDS NUMERICAL MODELING  

APPLICATION OF AN HYBRID APPROACH TO DEBRIS-FLOWS SIMULATION  
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ABSTRACT 

Natural phenomena in mountains put people and assets at risk. Risk level is often described as a 
combination of hazard and vulnerability. Hazard relates to the intensity and frequency of phenomena 
while vulnerability concerns damages and values assessment. In the debris-flows context, numerical 
models are used to assess height, speed and extent of flow. One important issue is to consider the 
influence of input data imperfection on simulation results.  
 
This article presents the “Hybrid” approach that propagates the uncertainty through numerical 
simulation models and considers the different aspects of information imperfection, especially its 
imprecision (lack of information, inaccuracy of measure…).  This new method generalizes, under 
some restrictive conditions, the usual Monte Carlo method, by using probability, possibility and belief 
function theories, used as tools for coding sets of probability densities. An example of results 
(quantile of deposition heights, threshold exceedance probabilities) of a numerical simulation of 
debris-flows is proposed: they show the influence of data imperfection including those resulting from 
expert assessments on the simulation results. 
 
Keywords: Natural hazards, mountains rivers, debris-flows, numerical modeling, expert assessment, 
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INTRODUCTION 

Natural phenomena in mountains put people and assets at risk. Risk level is often described as a 
combination of hazard and vulnerability. Hazard relates to the intensity and frequency of phenomena 
while vulnerability concerns damages and values assessment. Risk assessment implies to combine 
those two components and propose risk reduction measures and strategies. In the debris-flows context, 
numerical models are used to assess height, speed and extent of flow. Others information sources such 
as historical data, expert assessments are also used to take a decision about the hazard level. One 
important issue is therefore to consider in an integrated framework the information imperfection 
resulting from those heterogeneous sources (figure 1).   
 
Our problematic is to take into account more faithfully the information quality in the global hazard 
assessment process. The main goal of this article is to present another methodology to propagate the 
uncertainty through numerical simulation models based on an “hybrid” approach: we present and 
discuss an uncertainty analysis based on a numerical modeling of a debris-flows phenomenon.  
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Fig. 1 Numerical modeling is one of numerous information sources used by experts to assess risks (Tacnet et 
al., 2010b) 

This paper is organized as follows: the first section introduces the topic. The second section briefly 
presents the hybrid approach and the numerical model lave2D used to simulate debris-flows. The third 
section describes the methodology of hybrid approach applied to lave2D calculations. Section 4 
presents the application and results and section 5 is the conclusion.  

BACKGROUNDS 

Probability and possibility theories: what are the main differences?  

Probability theory is the most usual and successfully completed framework to represent uncertainty. 
In uncertainty analysis, Monte Carlo method refers to this theory, by assessing for each input of the 
model, an unique density function based (ideally) on statistical samples. Unfortunately, due to partial 
knowledge and data, available information about input parameters remain imperfect and often come 
from imprecise sources (expert judgment, lack of knowledge ...).  In this case, one usually chooses an 
unique density function among all those that don’t contradict the available information. Nevertheless, 
that presupposes, for most imprecise variables, that one adds some information and makes a bet on the 
real distribution. Different choices for the same variable’s uncertainty will lead to different outputs, 
and thus influence the decision without being clearly known by the decision maker. 

Basics of Possibility theory 

Given a variable X valued in Ω, a possibility distribution is a normalized mapping  ]1,0[: →Ωπ    

describing the potential likelihood of the values of X, and inducing two dual measures of likelihood: 

 )(sup)( xA Ax π∈=Π  (Possibility measure), 

 )(1)( AAN Π−=  (Necessity measure). 

The possibility measure evaluates the extent to which an event A is plausible. Necessity measure 
evaluates the extent to which A is certain. Thus, these measures can be interpreted as bounds of the 
probability of A: )()()( AAPAN Π≤≤ . 

One can define an α-cut ( ]1,0[∈α ) as the set { }απα ≥= )(xxE . Then π can be construed as a 

family of nested confidence sets iE  with decreasing confidence degrees )( iEN , corresponding to 1-

)( iEN  α-cuts. 
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π encodes a set of probability measures (Dubois et al., 2000): 

 { })()()(, AAPANAP Π≤≤Ω⊂∀=Ρπ  

A more convenient (but less precise) representation of this set is to consider the events of type 
],( x−∞  and to define bounds of cumulative distribution functions (probability box). 

Fig. 2 Illustration of possibility distribution and P-box. 

To conclude, this theory proposes a convenient framework to represent an expert judgment as nested 
confidence sets with decreasing confidence degrees, and makes it possible to represent both 
variability and imprecision, by encoding a set of probability measures rather than one. 
 
Basic of Belief functions theory 

One associates to a variable X valued in Ω, a mass function m on a finite set of subsets of Ω, that is to 
say, a discrete probability distribution ]1,0[)(: →ΩΡm .  m induces two dual measures of likelihood 

(Shafer,1976): 

 ∑
∅≠∩

=
EAE

EmAPl )()(  (Plausibility measure), 

 )(1)( APlABel −=  (Belief measure). 

The plausibility measure evaluates the extent to which the available information (traduced by m) 
implies an event A. Belief measure evaluates the extent to which the available information does not 
contradict A. Thus, as for possibility theory, these measures can be interpreted as bounds of the 
probability of A :   )()()( APlAPABel ≤≤ .  m encodes a set of probability measures (Dubois et al., 

2000): 

{ })()()(, APlAPABelAPm ≤≤Ω⊂∀=Ρ , that can be also represented by a probability box. 

 
Lave 2D: The simulation software 

The lave2D model is dedicated to the computation of the unconfined free-surface spreading of 
materials with complex rheology (Laigle et al., 2003).  It is based upon the steep-slope-shallow-water-
equations which are solved using a finite volume technique which requires first to mesh the domain of 
interest. Equations are solved taking into account the material behaviour via a specific wall shear 
stress expression and the field topography represented by a Digital Elevation Model. A hydrograph 
can be specified as boundary condition. The model produces values of the flow height and velocity at 
each cell of the mesh and for each time step of the computation. 

 
The expression of the wall shear-stress we use, due to Coussot (1994), is based upon the assumption 
of a visco-plastic behaviour which can be represented by a Herschel-Bulkley model. It is given by the 
following expression: 
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where τp is the wall shear stress  which depends on the yield-stress τc and consistency K of the 
material. ρ is the density of the material.  
 
A simple pre-treatment program makes it possible to declare the required inputs which are: boundary 
conditions (imposed hydrograph  at the point where the flow enters the zone of spreading), initial 
conditions (flow depth and velocity at each point, if required by the case studied), computation mesh 
structure, elevation matrix easily imported from a G.I.S. , rheological parameters and other data 
relative to the computation (initial time step, CFL stability criterion of the numerical scheme, 
simulation duration).  
 
The computation gives for each time and cell of the mesh, the height of material and the two 
components of the plane velocity. The final result is a series of matrices having the dimensions of the 
computation grid. Each matrix contains, for each cell: the flow height at a given time step (every 100 
s for example). Each of these matrices can be directly imported into any G.I.S as a grid. In practice, 
the computation results are therefore used mainly to produce maps of the deposit extent, height and 
maximum flow depth. Such maps can be superposed on other geographical information layers, so that 
endangered zones can easily be delineated and compared to field vulnerability (figures 11,12,13).  
 

 
 

Fig. 3 Simulation grid used by lave2D software to model the debris-flows propagation.  

METHODOLOGY 

Let us consider a model  G  with n real-valued inputs nXX ,....,1  and a real valued output  Y . The 

analysis of criteria of interest (quantiles, cumulative distribution function, etc.) leads to the decision. 
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Fig. 4 Main components  of the  uncertainty analysis: model, inputs, outputs and criteria of interest for results 
interpretation  

One propagates the known uncertainty concerning the input variables through the model, assessing 
the uncertainty of the output variables (figure 4). Thus, the main issue is to assess at best, and as 
objectively as possible, the input uncertainty.  In most usual uncertainty analysis approaches, 
probability Monte Carlo method is used through density function based on statistical samples. 
Unfortunately, due to partial knowledge and data, available information about input parameters 
remains imperfect and often comes from imprecise sources. This can correspond to assertions 
resulting from expert judgment such: “we are certain that this debris-flows torrential flood has 
reached this point... “, “ it is possible that the volume will be between 20000  and 25000  m3... “. In 
that case, the choice of a probability density function presupposes, in case of imprecise variables, that 
one adds some information and makes a bet on the real distribution. To consider the different aspects 
of information imperfection, especially its imprecision, the “Hybrid” method (Baudrit, 2005a, 2005b) 
(Chojnacki et al., 2009) of uncertainty analysis has been proposed: this methodology generalizes, 
under some restrictive conditions, the usual Monte Carlo method, by using the theories previously 
described: probability theory, possibility theory and belief function theory, used as practical tools for 
coding some imprecise probabilities (Dubois et al., 2000). 
 

From uncertainty of input data to uncertainty on results 

 

Let us suppose that information about kXX ,....,1   is precise enough to be reasonably represented by 

its unique joint probability distribution { }kp :1 . nk XX ,....,1+  are imprecisely known and are 

respectively associated to possibility distributions nk ππ ,....,1+ . 

 

• Sampling: one generates M samples  { } { }
m

k

l

k xx :1:1 ,....   stemming from { }kp :1   , according to usual 

Monte Carlo sampling. One generates M degrees of confidence  ml αα ,......  stemming from 

an uniform law on [0,1], and consider the associated α-cuts { } { }

ml

nknk EE
αα

:1:1 ,...., ++   from the 

possibilistic variables. 
 

1. Optimization and propagation: for each simulation  { } { }( )i

nk

i

k Ex
α

:1:1 , +  with  mi ≤≤1 , one 

optimizes G   on 
ii

nk EE
αα ××+ ....1  to get an interval  [ ]ii

yy supinf ,   and assigns to it a mass 
M

1
  : 

it results a mass function on Y which can be interpreted in terms of imprecise probabilities 
according to belief function theory (figure 5). 
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Fig. 5 Sampling and propagation related to the Hybrid method. 

5. Post-treatment: the numerical results induce a mass function synthesized by a P-box (lower 
and higher probability distributions). It can be used in an information fusion process fused 
considering many other imprecise sources to take a decision such as defining homogenous 
risk level areas (Tacnet, 2009) (Tacnet et al., 2010a, 2010b). A more global methodology is 
proposed to apply these methods to any simulation model and few criteria of interest, usually 
reached in safety studies (probability of exceedance, percentiles…) (figure 6). 

 

Fig. 6 Main criteria of interest used to interpret the results: quantile and probability of exceedance.  

  
Restrictive conditions 

 

In addition to the imprecision of available information about the inputs of the model, the Hybrid 
method requires two restrictive conditions: 

1. Stochastic independence between probabilistic and possibilistic variables (as dependency 
structures are still unclear between a sample and an interval); 
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2. G  is monotonous for each possibilistic variable to avoid rough optimization calculi. 
If any of these conditions are false for a given input, one shall resign to use an usual unique 
probability density function. 
 

 

Fig. 7 Principles of uncertainty analysis : different theories can be used to represent information imperfection.  

APPLICATIONS 

Description of the Torrent Saint-Antoine 

The St Antoine Torrent is a small steep land mountain stream located near Modane in the Maurienne 
Valley that drains a 5.2 km² catchment.  It is a left side tributary stream of the Arc river. It is exposed 
to three main types of floods corresponding to storm floods during warm season, snowmelt floods and 
floods due to the “Lombarde” regime coming from Mediterranean Sea. The catchment basin 
orientation is North/North-West – South/South-East and its maximum elevation is 3000 m, its 
minimum elevation is 1000 m. The last significant flood occurred in 1987 (55-80 000 m3 deposit 
volume on national road n°6. The Saint-Antoine Torrent threatens both the national road n°6 leading 
to the Mont-Cenis path and the railway Frejus tunnel between France and Italy (figure 8). 
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Fig. 8 Case study: Torrent Saint-Antoine, Modane, France  

Specifications 

1. Inputs of the model 

− probabilistic variables : rheological parameters  
ρ

τ C  and 
C

K

τ
 are both imprecise, but do not 

satisfy the condition of monotony. Stochastic independence is assumed between these 
variables. 

− possibilistic variables : flow rate Q , time of entrance  T  are both imprecise and satisfy the 

conditions of the Hybrid method. 
 

2. Output and criteria of interest 

We assessed the maximum height maxH  in each pixel, and more especially the 0.95-quantile and the 

probability of the event  mH 2max ≥ . 

 
Quantification 

From expert assessment on the volume of debris-flow on this torrent : 

 "1700000" 3
mV ≤≤ is certain;  

"400005000" 3
mV ≤≤ is %50  sure; 

"10000" 3
mV =  is the most likely.  

We calculated possibility distribution for both flow rate and time of entrance (figure 9). 
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Fig. 9 Possibility distributions for flow rate and time of entrance. 

From expert assessment on the rheological parameters: 

"425.0" ≤≤
ρ

τ c  is certain  ;     "25.0" ≤≤
ρ

τ c  is %75  sure;          "1" =
ρ

τ c  is the most likely.  

 

"11.0" ≤≤
c

K

τ
 is certain  ;       "5.01.0" ≤≤

c

K

τ
 is %75  sure;       "3.0" =

c

K

τ
 is the most likely.  

 
We chose a consistent probability density function distribution for each parameters (figure 10). 

 

Fig. 10 Probability cumulative distribution functions for rheological parameters. 

RESULTS 

Propagation provides in each pixel a mass function on  maxH ,  represented (for convenience) by its 

associated P-box, and post-treated by bounding 0.95-quantiles and probability of exceedance (figures 
11, 12). The hazard assessment, so achieved, has been associated to a vulnerability analysis to lead a 
complete spatial risk assessment  (Kaiber da Silva, 2011) (Dupouy et al., 2011) (figures 12,13). 
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Fig. 11 The results of numerical simulations consist in two cumulative distribution functions bounding the real 
but unknown because of  imperfect knowledge about input data.  

Numerical modeling has been done on this torrent considering different scenarios for debris flows 
volumes. The results are interpreted in terms of quantile 95% for the maximum height and probability 
exceedance (figure 11 (a) and (b)). 
 

 
 

(a) Maximum height (in meters) reached in  95 % of 
cases (quantile 95) 

(b) Threshold  exceedance probability (a number in 
[0,1]) of the proposition  

“Height of debris-flows deposition >2m” 

Fig. 12 Hybrid approach: debris-flows modeling based on imprecise knowledge of  input parameters (Dupouy et al, 
2011) 

The results are then represented in a G.I.S. and compared to different kinds of vulnerability 
(residential, industrial, administrative buildings) (figures 12).  
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Fig. 13 Application of hybrid approach for information imperfection assessment to the context of natural hazards 
(debris-flows): case study of the Paramount project – GIS representation of Scenario 55 000 m3 – quantile 95% 
(Dupouy et al., 2011) (Kaiber da Silva, 2011) 

CONCLUSIONS 

Numerical modeling of natural phenomena is more and more used in the risk management process. 
Scientists, technicians and all the stakeholders involved in decision making must keep aware that any 
simulation model result closely depends on the quality of input data that are used. When knowledge 
about inputs parameters is poor, they should consider very carefully the decisions that there are going 
to take when they mainly found them on the numerical results. The hybrid approach is a new method 
to consider the real imperfection of information resulting from expert assessment.  
 
A first application to debris-flow modeling is proposed. Possibility distributions appears to be a 
flexible tool for eliciting expert knowledge related to debris-flows  volume, rheological 
parameters...The results are helpful for a  spatial hazard assessment, by quantifying the heights and 
extension hazard through a numerical model for muddy debris flow simulation. Instead of few results, 
we get a wide range of simulations showing the influence of input data imperfection on results.  
A key issue, which is quite new in comparison with previous applications described in the literature, 
is the preliminary analysis of monotonicity of the model for each parameter.   Therefore, some 
methodological developments are still needed and under progress to adapt the hybrid approach 
methodology to the contexts of debris-flows and bedload transport. This also includes the key issue of 
results validation. Nevertheless, the results provided by this method are quite interesting for decision-
makers since it shows how the real knowledge influences the simulation results. To our opinion, no 
numerical modeling should be done without having done this uncertainty analysis, especially when 
severe consequences are expected such as in the natural hazards context.  
 
From another point of view, though the results are more realistic, it is not obvious that it really helps 
decision since it shows all the lack of knowledge about hazard assessment. To our opinion, it remains 
a great challenge to make all the stake holders aware of this. Specific developments are still required 
to analyze the perception of such methods and to help to take decisions on the basis of the results 
(Tacnet et al., 2010b).  
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