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LANDSLIDE DETECTION AND SUSCEPTIBILITY MAPPING USING 
INNOVATIVE REMOTE SENSING DATA SOURCES

Herwig Proske, Klaus Granica, Manuela Hirschmugl and Michael Wurm1

ABSTRACT

Landslide susceptibility analysis using univariate statistical models is a complex and sensitive 
task. The resulting quality of the functional models is directly dependant on the quality of the 
input data with respect to spatial resolution, classification accuracy and completeness. In this 
paper, the application of innovative Remote Sensing data sources is evaluated. The 
classification of Very High Resolution (VHR) Satellite data proved to deliver accurate land 
cover classes. Results show that congruent quality from QuickBird data compared to aerial 
photographs can be obtained. As QuickBird images have a larger coverage and a better 
radiometric stability, the development of automatic tools is favoured. Interpretations based on 
Earth Observation data seem to be the only possibility to obtain landslide inventories that 
cover large areas and are widely complete. Only VHR imagery allows the detection of small 
landslides. Digital Terrain Models based on airborne Laserscanner data facilitate a precise 
derivation of geomorphometric parameters. The analysis of the susceptibility modelling 
results shows the high significance of geological and land cover parameters. 

Key words: Remote Sensing, Landslides, Susceptibility Modelling 

INTRODUCTION

High mountainous regions are challenging to human society in many senses. For centuries, 
people living in these areas had to contend with the unfavourable climatic conditions, the 
difficulties of settling on steep slopes and cultivating sparse agricultural land or the force of 
transporting goods on endangered paths or roads. Moreover, these unfavourable conditions 
have also strongly influenced the means of collecting information for scientific investigations 
in such an extreme environment. Cumbersome field work taking much of manpower and 
therefore generating high costs was the usual method for data collection. The identification 
and mapping of landslide risk zones is an example of such a very labour-intensive work, if 
solely based on fieldwork. To overcome this drawback, which is specifically severe in 
inaccessible areas, nowadays remote sensing data can be used. 

Generally, the spatial probability of mass movements is influenced by a number of 
environmental quasi-static factors. Quasi-static means, that these factors are normally stable 
over a period of time. Most of these factors can be assigned to one of the following main 
categories: (a) geology; (b) geomorphology and topography; (c) land use and land cover. The 
triggering factors (dynamic factors) for an actual landslide event are temporal ones such as 
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abundant rainfall, rapid spring snow melt or earthquakes. For the generation of basic zoning 
maps of mass movement susceptibility, the triggering factors are not taken into account. 
However, indicators for the quasi-static factors should be extracted as automatic as possible. 
Currently existing very high resolution (VHR) satellite remote sensing systems offer an 
opportunity to extract land surface information that until recently could only be derived from 
aerial photographs or by extensive field work.

This work was performed within the scope of the EU funded project ASSIST (Alpine Safety, 
Security & Informational Services and Technologies). One of the main tasks was the design 
of a geo-service framework based on innovative Earth Observation (EO) data to support 
mitigation and emergency measures. This included the combination of remote sensing results 
with other spatial information such as geological maps or digital elevation models. To address 
the needs of risk management three types of basic products were generated: base information 
layers (maps of quasi-static parameters, e.g. land cover), dynamic information layers (maps of 
dynamic parameters, e.g. snow cover) and products processed from the information layers 
using modelling approaches (e.g. landslide susceptibility maps). Some results of the latter are 
described in the following contribution.

OBJECTIVES

The focus in this investigation was the identification of parameters and/or indicators for 
natural hazards with special emphasis on landslides and the derivation of susceptibility maps. 
Focal points are the usage of new remote sensing tools and the development of (semi-) 
automatised procedures for the derivation of environmental factors that might affect landslide 
occurrence. In order to obtain land cover and land use parameters with adequate accuracy, 
VHR (very high resolution) satellite imagery were used. Based on these data, supervised 
classification and visual interpretation were applied and investigated with special emphasis on 
the development of automatic classification tools. As the test area covers a height difference 
of more than 2300 m, it is evident that there are manifold surface types. Thus, the applied 
methodology had to be elaborated in a flexible way involving different approaches for the 
derivation of the needed parameters. The work did not include the development of new 
landslide hazard zonation techniques, of which many have been developed over the last 
decades (e.g. Hansen 1984, Varnes 1984, Soeters and Van Westen 1996, Leroi 1996, Aleotti 
and Chowdury 1999, Gorsevski et al. 2003, Van Westen et al. 2003, Zhou et al. 2003). 

GEOGRAPHICAL AND GEOLOGICAL SETTING OF THE TEST AREA 

The test region in the western part of Tyrol/Austria covers an area of approximately 228 km² 
and an altitude difference of more than 2300 m. The highest summit of the Verwall Mountain 
Group reaches 3168 m above sea level, whereas the Sanna Valley near Landeck is at a height 
of approx. 820 m. The test area includes two main geological units: (1) the Verwall Mountain 
Group is part of the Silvretta crystalline complex and is dominated by metamorphic rocks 
(mainly phyllites, mica schists, gneiss and some amphibolites) whereas (2) the Lechtal Alps 
are part of the Northern Calcareous Alps, dominated by carbonatic and clastic sedimentary 
rocks (limestones, dolomites, marls, sandstones and shales). Both geological units incorporate 
lithologies which are highly susceptible to different types of mass movement processes. The 
tectonic environment is dominated by the overthrusting of the nappe systems of the Northern 
Calcareous Alps on the crystalline units.
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Fig. 1: Location of the test area in the western part of Tyrol 
(- - - border of subset presented in Fig. 3)

The landscape was shaped strongly by 
the pleistocene glaciation periods. 
Furthermore, the pleistocene 
glaciation has left widespread 
morainic deposits. Today only some 
minor glaciers in the highest parts of 
the mountains have persisted. Karst 
phenomena are typical for the 
carbonatic units of the Lechtal Alps. 
The main valleys, the Stanzer- and the 
Paznaun Valley, are densely populated 
and extensively used for transport and 
touristic purposes. Therefore, the area 
is highly vulnerable to natural hazards 
and consequences of events are 
typically more severe than in other, 
less developed regions. For instance, 
flooding caused heavy damage on the 
infrastructure and settlements in 
August 2005 disrupting the important 
Arlberg railway route for more than 
three months.  

DATA SOURCES 

With the emerging of commercial satellite systems providing VHR data with a ground 
resolution of 1 m per pixel and below (IKONOS, QuickBird) the potential for space borne 
applications in many fields has broadened. Based on its detailed spatial information VHR 
satellite imagery is one possibility to derive the required land cover as well as partly the 
geomorphological information. Thus QuickBird data with a spatial resolution of 60 cm in the 
panchromatic mode and an additional four multi-spectral band range with 2.4 m resolution 
have been chosen as optical remote sensing data source. The acquisition date of the 
QuickBird scene was the 5th of September 2005 (12 days after the flood event). Typically, the 
use of stereo images would increase the information content, as three dimensional information 
about the vegetation (vegetation height) could be obtained. However, in the present case, no 
stereo data was available.

Aside from the Quickbird data, also Digital Elevation Models (DEMs) played an important 
part in the analysis. In this investigation two different DEMs were used, i.e. a 25 m grid from 
the Austrian national land survey ‘BEV’ and a high resolution 3 m DEM based on LiDAR 
(Light Detection And Ranging) data. The use of a DEM in high mountainous regions is a 
prerequisite in the overall processing of the EO Data; e.g. the geocoding and topographic 
normalization. Furthermore the DEM is the most crucial input data set for the derivation of 
geomorphometric parameters as, for instance, slope, aspect (orientation of slope), curvature, 
roughness (variability in slope and aspect in local patches of the DEM) and drainage network. 
The standard DEM shows a varying accuracy depending on the complexity of the terrain. The 
accuracy is stated to be about ± 2 - 5 m in non-forested and flat areas and ± 10 – 25 m in 
mountainous terrain or beneath forest (according to BEV 2007). The lower accuracy values 
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abundant rainfall, rapid spring snow melt or earthquakes. For the generation of basic zoning 
maps of mass movement susceptibility, the triggering factors are not taken into account. 
However, indicators for the quasi-static factors should be extracted as automatic as possible. 
Currently existing very high resolution (VHR) satellite remote sensing systems offer an 
opportunity to extract land surface information that until recently could only be derived from 
aerial photographs or by extensive field work.

This work was performed within the scope of the EU funded project ASSIST (Alpine Safety, 
Security & Informational Services and Technologies). One of the main tasks was the design 
of a geo-service framework based on innovative Earth Observation (EO) data to support 
mitigation and emergency measures. This included the combination of remote sensing results 
with other spatial information such as geological maps or digital elevation models. To address 
the needs of risk management three types of basic products were generated: base information 
layers (maps of quasi-static parameters, e.g. land cover), dynamic information layers (maps of 
dynamic parameters, e.g. snow cover) and products processed from the information layers 
using modelling approaches (e.g. landslide susceptibility maps). Some results of the latter are 
described in the following contribution.

OBJECTIVES

The focus in this investigation was the identification of parameters and/or indicators for 
natural hazards with special emphasis on landslides and the derivation of susceptibility maps. 
Focal points are the usage of new remote sensing tools and the development of (semi-) 
automatised procedures for the derivation of environmental factors that might affect landslide 
occurrence. In order to obtain land cover and land use parameters with adequate accuracy, 
VHR (very high resolution) satellite imagery were used. Based on these data, supervised 
classification and visual interpretation were applied and investigated with special emphasis on 
the development of automatic classification tools. As the test area covers a height difference 
of more than 2300 m, it is evident that there are manifold surface types. Thus, the applied 
methodology had to be elaborated in a flexible way involving different approaches for the 
derivation of the needed parameters. The work did not include the development of new 
landslide hazard zonation techniques, of which many have been developed over the last 
decades (e.g. Hansen 1984, Varnes 1984, Soeters and Van Westen 1996, Leroi 1996, Aleotti 
and Chowdury 1999, Gorsevski et al. 2003, Van Westen et al. 2003, Zhou et al. 2003). 

GEOGRAPHICAL AND GEOLOGICAL SETTING OF THE TEST AREA 

The test region in the western part of Tyrol/Austria covers an area of approximately 228 km² 
and an altitude difference of more than 2300 m. The highest summit of the Verwall Mountain 
Group reaches 3168 m above sea level, whereas the Sanna Valley near Landeck is at a height 
of approx. 820 m. The test area includes two main geological units: (1) the Verwall Mountain 
Group is part of the Silvretta crystalline complex and is dominated by metamorphic rocks 
(mainly phyllites, mica schists, gneiss and some amphibolites) whereas (2) the Lechtal Alps 
are part of the Northern Calcareous Alps, dominated by carbonatic and clastic sedimentary 
rocks (limestones, dolomites, marls, sandstones and shales). Both geological units incorporate 
lithologies which are highly susceptible to different types of mass movement processes. The 
tectonic environment is dominated by the overthrusting of the nappe systems of the Northern 
Calcareous Alps on the crystalline units.
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minor glaciers in the highest parts of 
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carbonatic units of the Lechtal Alps. 
The main valleys, the Stanzer- and the 
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and extensively used for transport and 
touristic purposes. Therefore, the area 
is highly vulnerable to natural hazards 
and consequences of events are 
typically more severe than in other, 
less developed regions. For instance, 
flooding caused heavy damage on the 
infrastructure and settlements in 
August 2005 disrupting the important 
Arlberg railway route for more than 
three months.  

DATA SOURCES 

With the emerging of commercial satellite systems providing VHR data with a ground 
resolution of 1 m per pixel and below (IKONOS, QuickBird) the potential for space borne 
applications in many fields has broadened. Based on its detailed spatial information VHR 
satellite imagery is one possibility to derive the required land cover as well as partly the 
geomorphological information. Thus QuickBird data with a spatial resolution of 60 cm in the 
panchromatic mode and an additional four multi-spectral band range with 2.4 m resolution 
have been chosen as optical remote sensing data source. The acquisition date of the 
QuickBird scene was the 5th of September 2005 (12 days after the flood event). Typically, the 
use of stereo images would increase the information content, as three dimensional information 
about the vegetation (vegetation height) could be obtained. However, in the present case, no 
stereo data was available.

Aside from the Quickbird data, also Digital Elevation Models (DEMs) played an important 
part in the analysis. In this investigation two different DEMs were used, i.e. a 25 m grid from 
the Austrian national land survey ‘BEV’ and a high resolution 3 m DEM based on LiDAR 
(Light Detection And Ranging) data. The use of a DEM in high mountainous regions is a 
prerequisite in the overall processing of the EO Data; e.g. the geocoding and topographic 
normalization. Furthermore the DEM is the most crucial input data set for the derivation of 
geomorphometric parameters as, for instance, slope, aspect (orientation of slope), curvature, 
roughness (variability in slope and aspect in local patches of the DEM) and drainage network. 
The standard DEM shows a varying accuracy depending on the complexity of the terrain. The 
accuracy is stated to be about ± 2 - 5 m in non-forested and flat areas and ± 10 – 25 m in 
mountainous terrain or beneath forest (according to BEV 2007). The lower accuracy values 
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are more reasonable for most of the present test area. The second available DEM was derived 
from LiDAR data. The general accuracy of LiDAR DEMs depends on the used point density 
and on the vegetation cover. LiDAR systems offer good terrain information also beneath 
forest. The LiDAR data used in the current study have a point density of 1.1 point per m². 
Therefore, the spatial resolution was set to 3 m for the area-wide LiDAR DEM. LiDAR data 
with point densities of 4-6 dots per m² were available only for a small section of the test area. 
These data were used to evaluate the effects of different LiDAR DEMs. 

Geological information could be deduced from a digital geological map at a scale of 1:50.000 
from the Austrian Geological Survey (GBA 2004). Within the scope of this study additional 
fieldwork in selected areas was done mainly for verification and specification purposes. 

METHODS

The spatial probability of landslides can be obtained through analysing the relation between 
the locations of past landslide events and a set of environmental factors in order to predict 
areas of landslide initiation that have similar combinations of factors using statistical 
methods. The resulting hazard maps are of qualitative nature, concentrating on determining 
the susceptibility which can be seen as a relative indication of the spatial probability (Van 
Westen et al. 2006). This chapter is subdivided into four sections according to the 
corresponding aims. In the first section, the derivation of land cover data from the VHR 
satellite imagery is explained. The second section deals with the derivation of 
geomorphometric parameters from the generated DEMs, the third one gives attention to the 
geological classification and the generation of the landslide inventory. Finally, the fourth 
section describes the two univariate statistical models used for susceptibility assessment. 

Land Cover Classification 

Land cover information was derived from orthorectified, topographically normalized and 
pansharpened QuickBird imagery. The first classification step was focused on the derivation 
of a coarse land cover layer by applying a pixelwise supervised classification. Some 50 
reference areas have been extracted from the pansharpened image by visual interpretation. 
Subsequently, a spatial merging algorithm was applied on the classification result to obtain a 
more homogeneous appearance of the individual classes, i. e. to remove the “salt and pepper 
effect”. This algorithm is used to merge adjacent regions according to their spatial properties. 
Regions which are smaller than the specified size or regions with a shape index higher than a 
given threshold are merged. The similarity to neighbouring classes, with which the object 
could be merged, is calculated based on its neighbourhood properties. Finally, the following 
landcover classes have been derived successfully: water, snow, ice, broadleaf forest, 
coniferous forest, four types of meadows, non-vegetated areas and shadow. However, there 
are still some uncertainties and some difficult areas, where this first classification is too 
coarse or too inaccurate. One example is the exact delineation of the upper forest border, 
another example is the further differentiation of the class “non-vegetated areas”. This was 
performed in the next phase of the classification. 

The pixelwise classification based on the spectral values only had shown its limitations for 
deriving more detailed classes. To accomplish the requirement of a more detailed separation 
within e. g. the class “non-vegetation”, the textured information of the panchromatic image 
was used. This is performed using a texture algorithm, which calculates certain statistical 

values based on mean or variance within the sectors surrounding a pixel. The radius and the 
number of sectors (or wedges) can be specified by the user. This texture layer can be used to 
improve the classification accuracy and detail. Additionally, the results from the texture 
calculation were supporting the determination of the upper forest border, which is essential to 
quantify the forest area, especially in the higher elevated regions. Furthermore, the upper 
forest border line is helpful to differentiate between “non-vegetation” areas within the image. 
For instance, non-vegetation areas could be settlements and streets in the valley, whereas the 
same spectral response from above the forest border line shows talus deposits, bare rock and 
eroded surfaces. Minor errors have to be corrected by visual interpretation, but the effort for 
this correction is low, because most of the border lines could be correctly derived by the 
automatic procedure.  

Due to their different capability of infiltration and potential for providing material for 
landslides it was important to separate coarse talus deposits from fine talus deposits. The 
separation was performed again based on the texture information, which is inherent in the 
panchromatic image.  

Not all of the required indicators can be derived by automatic processing, e.g. rock glaciers, 
elongated ponds or wet areas. For this purpose visual interpretation is still an adequate 
procedure. More details on the classification procedure can be found in Granica et al. 2007. 

Tab. 1: Categories of Land Cover Classification based on QuickBird Data 

Sub-Category Parameters Method 
Vegetation Broadleaf Forest auto 
 Coniferous Forest auto 
 Mixed Forest auto 
 Clear cuts / afforestation auto 
 Green Alder auto/vis 
 Dwarf Mountain Pine auto/vis 
 Rhododendron, Shrubs auto 
 Meadows  auto 
 Alpine Pastures auto 
 Sparsely vegetated areas auto 
Non-Vegetation Snow auto 
 Ice auto 
 Water auto 
 Buildings vis 
 Roads, Sealed Areas auto/vis 
 Talus Deposits fine auto 
 Talus Deposits coarse auto 
 Bare Rock auto/vis 
 Elongated Ponds vis 
 Wet Areas vis 
 Rock Glaciers vis 

auto: automatic approach    vis: visual interpretation 

Land Cover Categories derived from QuickBird Data are shown in Table 1. Some of these 
parameters can be obtained by automatic approaches, while others still need fully or partly 
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are more reasonable for most of the present test area. The second available DEM was derived 
from LiDAR data. The general accuracy of LiDAR DEMs depends on the used point density 
and on the vegetation cover. LiDAR systems offer good terrain information also beneath 
forest. The LiDAR data used in the current study have a point density of 1.1 point per m². 
Therefore, the spatial resolution was set to 3 m for the area-wide LiDAR DEM. LiDAR data 
with point densities of 4-6 dots per m² were available only for a small section of the test area. 
These data were used to evaluate the effects of different LiDAR DEMs. 

Geological information could be deduced from a digital geological map at a scale of 1:50.000 
from the Austrian Geological Survey (GBA 2004). Within the scope of this study additional 
fieldwork in selected areas was done mainly for verification and specification purposes. 

METHODS

The spatial probability of landslides can be obtained through analysing the relation between 
the locations of past landslide events and a set of environmental factors in order to predict 
areas of landslide initiation that have similar combinations of factors using statistical 
methods. The resulting hazard maps are of qualitative nature, concentrating on determining 
the susceptibility which can be seen as a relative indication of the spatial probability (Van 
Westen et al. 2006). This chapter is subdivided into four sections according to the 
corresponding aims. In the first section, the derivation of land cover data from the VHR 
satellite imagery is explained. The second section deals with the derivation of 
geomorphometric parameters from the generated DEMs, the third one gives attention to the 
geological classification and the generation of the landslide inventory. Finally, the fourth 
section describes the two univariate statistical models used for susceptibility assessment. 

Land Cover Classification 

Land cover information was derived from orthorectified, topographically normalized and 
pansharpened QuickBird imagery. The first classification step was focused on the derivation 
of a coarse land cover layer by applying a pixelwise supervised classification. Some 50 
reference areas have been extracted from the pansharpened image by visual interpretation. 
Subsequently, a spatial merging algorithm was applied on the classification result to obtain a 
more homogeneous appearance of the individual classes, i. e. to remove the “salt and pepper 
effect”. This algorithm is used to merge adjacent regions according to their spatial properties. 
Regions which are smaller than the specified size or regions with a shape index higher than a 
given threshold are merged. The similarity to neighbouring classes, with which the object 
could be merged, is calculated based on its neighbourhood properties. Finally, the following 
landcover classes have been derived successfully: water, snow, ice, broadleaf forest, 
coniferous forest, four types of meadows, non-vegetated areas and shadow. However, there 
are still some uncertainties and some difficult areas, where this first classification is too 
coarse or too inaccurate. One example is the exact delineation of the upper forest border, 
another example is the further differentiation of the class “non-vegetated areas”. This was 
performed in the next phase of the classification. 

The pixelwise classification based on the spectral values only had shown its limitations for 
deriving more detailed classes. To accomplish the requirement of a more detailed separation 
within e. g. the class “non-vegetation”, the textured information of the panchromatic image 
was used. This is performed using a texture algorithm, which calculates certain statistical 

values based on mean or variance within the sectors surrounding a pixel. The radius and the 
number of sectors (or wedges) can be specified by the user. This texture layer can be used to 
improve the classification accuracy and detail. Additionally, the results from the texture 
calculation were supporting the determination of the upper forest border, which is essential to 
quantify the forest area, especially in the higher elevated regions. Furthermore, the upper 
forest border line is helpful to differentiate between “non-vegetation” areas within the image. 
For instance, non-vegetation areas could be settlements and streets in the valley, whereas the 
same spectral response from above the forest border line shows talus deposits, bare rock and 
eroded surfaces. Minor errors have to be corrected by visual interpretation, but the effort for 
this correction is low, because most of the border lines could be correctly derived by the 
automatic procedure.  

Due to their different capability of infiltration and potential for providing material for 
landslides it was important to separate coarse talus deposits from fine talus deposits. The 
separation was performed again based on the texture information, which is inherent in the 
panchromatic image.  

Not all of the required indicators can be derived by automatic processing, e.g. rock glaciers, 
elongated ponds or wet areas. For this purpose visual interpretation is still an adequate 
procedure. More details on the classification procedure can be found in Granica et al. 2007. 

Tab. 1: Categories of Land Cover Classification based on QuickBird Data 

Sub-Category Parameters Method 
Vegetation Broadleaf Forest auto 
 Coniferous Forest auto 
 Mixed Forest auto 
 Clear cuts / afforestation auto 
 Green Alder auto/vis 
 Dwarf Mountain Pine auto/vis 
 Rhododendron, Shrubs auto 
 Meadows  auto 
 Alpine Pastures auto 
 Sparsely vegetated areas auto 
Non-Vegetation Snow auto 
 Ice auto 
 Water auto 
 Buildings vis 
 Roads, Sealed Areas auto/vis 
 Talus Deposits fine auto 
 Talus Deposits coarse auto 
 Bare Rock auto/vis 
 Elongated Ponds vis 
 Wet Areas vis 
 Rock Glaciers vis 

auto: automatic approach    vis: visual interpretation 

Land Cover Categories derived from QuickBird Data are shown in Table 1. Some of these 
parameters can be obtained by automatic approaches, while others still need fully or partly 
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visual interpretation. Land Cover parameters were merged to a final nine classes for the 
susceptibility modelling. 

Derivation of Geomorphometric Parameters 

The topographical and geomorphological situation is one of the most relevant factors for 
landslides. Geomorphological features mainly have to be mapped by fieldwork and visual 
interpretation of remote sensing data. Nevertheless important characteristics can be derived 
from a DEM using standard software tools. This is true for most geomorphometric 
parameters, such as elevation, aspect, slope, vertical as well as tangential curvature and 
drainage network. In addition, more sophisticated parameters indicating landslide activity like 
roughness parameters were calculated. Eigenvectors (according to McKean & Roering 2004) 
measure the variability of slope and aspect in local patches of the DEM. On this basis, 
different statistical measures were applied to evaluate the local terrain roughness. As the 
spatial resolution of the DEM is most crucial for geomorphometric analyses, the 25 m grid 
from the Austrian national land survey ‘BEV’ and the high resolution 3 m LiDAR grid were 
compared. 

Geological Classification and Generation of the Landslide Inventory 

Geological information was deduced from a digital geological map at a scale of 1:50.000 
from the Austrian Geological Survey (GBA 2004). Based on expert knowledge, a 
simplification of the map information was performed by merging lithological units with 
similar geotechnical and hydrogeological properties. This step resulted in a significant 
reduction of map units from an original 116 to a final 16, standing for distinct properties with 
respect to landslide occurrence. Within the scope of this study additional fieldwork could be 
focussed on the verification and specification of data and results. Normally much more work 
has to be spent for collecting detailed information about the geological situation as modern 
digital geological maps are not available for most of Austria. 

GIS-based landslide inventories are the key component of any statistical landslide modelling 
as they act as training and verification data. The compilation of the present landslide 
inventory was performed mainly by on-screen interpretation of a simulated QuickBird 
‘pseudo-stereo’ image which has been generated from the monoscopic image and the 
respective Digital Elevation Model. The simulation of the pseudo-stereo partner was possible 
with RSG (Remote Sensing Software Package Graz), the in-house software of the Institute of 
Digital Image Processing. Using ERDAS StereoAnalyst, the 3D views with different colour 
composites greatly facilitated in the visual identification and classification of landslides. The 
inventory is restricted to recently active mass movements, which are represented in the field 
by open scars and sliding surfaces without significant vegetation. As pointed out by Van 
Westen et al. 2006, the specific combination of environmental factors is quite different for 
different types of landslides. Therefore, different training data sets are necessary for different 
types of landslides and separate statistical models have to be developed. Since shallow 
translational and rotational slides are predominant in the study area, the current investigation 
is restricted to these types. As was shown by comparative analyses of aerial photos taken in 
1999 and additional fieldwork, many of the mapped slides occurred after this date. Most of 
them probably were triggered or reactivated by the August 2005 precipitation event. 
Although, the stereo impression greatly improves the determination of specific landslide 
features, they can still be confused with other processes active in high mountain 
environments, which create similar patterns (e.g. erosion and transport of loose material by 

avalanches, wind erosion). As well the differentiation of bare rock in high mountain 
environments remains unsolved in many cases. 

Landslide Susceptibility Assessment 

The results from the described data sources were integrated as input data to derive landslide 
susceptibility maps on a single pixel basis.  
The susceptibility is obtained through analysing the relation between the locations of past 
landslide events and a set of environmental factors, in order to predict areas of landslide 
initiation that have similar combinations of factors, using statistical methods. These indirect 
methods calculate the importance of the combinations of parameters occurring in landslide 
locations and extrapolate the results to landslide-free areas (Van Westen 1993, Van Westen et 
al. 2006). As the triggering of different types of landslides depends on different parameter 
combinations, the current investigation is solely restricted to shallow translational and 
rotational slides. 

Two basic univariate statistical methods were used to model the landslide susceptibility, 
namely the so-called “Susceptibility method” implemented according to the description of 
Van Westen 1993 and the “Weights of Evidence (WoE) method” according to Bonham-Carter 
et al. 1989 and Van Westen 1993. The models were implemented and executed within an 
ArcGIS environment.  

The selection of input parameters is very sensitive to dependencies and redundancies of 
parameters, because the main assumption for univariate statistical methods is that the 
environmental factors should be conditionally independent. The use of conditionally 
dependent variable maps will result in very high probability values for those combinations 
which have high weight values in different variable maps. This effect therefore will adulterate 
the results significantly (Van Westen 1993). Two examples from our case study will be given: 

(1) The parameter “slope aspect” turned out to be closely connected to the geology. This can 
be explained by the geological setting of the test area. The area is characterised by the Lechtal 
Alps to the North (= mainly south-facing slopes) and the Verwall Group to the south (= north- 
and south-facing slopes). These both units are separated by a tectonic lineament running from 
west to east. Since landslides are much more frequent in the Lechtal Alps due to their 
lithology, a high relevance is given to the parameter “slope aspect”, although the determinant 
factor of the landslide distribution is the specific geologic situation.

(2) The parameter “elevation” is closely connected to the land cover (forest and non-forest 
areas, non-vegetated areas) which is easily to be understood by the climatic conditions and 
their effects on the vegetation of high altitude regions. 

Therefore after several tests both parameters (“slope aspect” as well as “elevation”) were 
dismissed completely. 

In order to transfer the resulting continuous values into classes and to produce zoning maps, 
the values were classified into five classes. The classification scheme is based on deciles. 
Deciles 1 – 3 are assigned to the lowest susceptibility class (D1-3  1), the next three classes 
consist of 2 deciles each (D4+5  2; D6+7  3; D8+9  4). The 10th decile is equivalent to 
the highest susceptibility class (D10  5).
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RESULTS AND DISCUSSION 

The results of this work showed that, with respect to the derivation of surface parameters, 
congruent quality from QuickBird data compared to that of aerial photographs with equal 
spatial resolution can be obtained. Furthermore the QuickBird images have a larger coverage 
and a better radiometric stability, which has proved to be of high benefit for the development 
of automatic tools. The quality of the land cover classification based on QuickBird imagery 
was assessed by using an independent test area set of 5 - 6 test areas for each class. The 
overall average accuracy is 89.67 %. This accuracy is sufficient for the envisaged purpose. 

Regarding the usability of different DEMs for 
susceptibility modelling the high resolution 
DEM shows much more details and accuracy 
enabling a more precise analysis of the 
surface. The shaded relief of the LiDAR data 
(4-6 points/m²) represents well all forest roads, 
ravines, small ridges and undercutting of 
slopes even in forested areas (Fig. 2), while 
the 25 m DEM only shows large-scale 
geomorphic features.  

Also a quantitative comparison of the DEMs 
(25 m resolution vs. 1 m resolution) regarding 
slope calculations was performed. Table 2 
shows the area statistics for this data set. 
Basically, the differences are not as obvious as 
they are in the maps, because the statistics 

over a larger area equalize some of the differences. However, the more accurate 
differentiation in the slope classes is reflected: the flat as well as the very steep areas are well 
represented in the LiDAR model but largely omitted in the coarse DEM.  

Tab. 2: Comparison of slope calculations from 25 m and 1 m DEM 

Slope Class (°) DTM 1 m (%) DTM 25 m (%) 
0-10 9,55 4,97 
10-20 9,93 10,11 
20-30 19,86 22,50 
30-40 33,26 37,49 
40-50 18,69 20,63 
50-60 6,70 4,18 
60-70 1,79 0,11 
70-80 0,21 0,00 
80-90 0,00 0,00 

The compilation of the landslide inventory resulted in the detection of approx. 1060 
landslides. Interpretations based on EO data seem to be the only possibility to obtain landslide 
inventory maps that cover large areas and are widely complete. Only the use of aerial 
photographs or VHR satellite imagery such as QuickBird allows the detection of small 
landslides.

Fig. 2: Shaded relief of LiDAR DEM displaying
Zintlwald landslide near Landeck.

Altogether 44 input classes were used for the susceptibility modelling, of which more than a 
third consisted of geological classes. The analysis of the calculated weights based on the WoE 
method showed the highest values for geological and land cover parameters. The highest 
value was assigned to the geological unit “Cretaceous shales” followed by the land cover 
units “bare rock” and “sparsely vegetated areas”.

In order to evaluate the quality and transferability of the results of the WoE model (including 
the parameters), the test area was subdivided into a western and an eastern part. The western 
area served as model-development area where the weights were calculated. These weights 
were then applied to the eastern part. The results were evaluated by using the landslide 
inventory of the eastern part. In the model-development area (west), the percentage in the 
highest risk class is almost 70%. On the contrary, in the model-evaluation area (east), only 
about 30% of the landslides were assigned to the highest class. However, the two highest 
ranked classes share, in both the model-development and the evaluation area, more than 75% 
of the landslide areas (Tab. 3).

Tab. 3: Results of the evaluation of the WoE modelling 

Susceptibility Class  1 (low) 2 3 4 5 (high) 
West (%) 1,5 1,9 6,4 20,8 69,4 
East (%) 3,1 5,6 14,4 46,1 30,8 

Fig. 3: Subset (~4000 m x 4000 m) of the results of the susceptibility (left) and the weights of evidence method 
(right) of the study area. Level of brightness indicates susceptibility class (black: lowest, white: highest) and 
hatched areas show the training landslides. 

Comparisons between the Susceptibility method and the WoE method were accomplished and 
differences of the resulting maps were analysed. The example shown in Fig. 3 focuses on a 
subset in the southern part of the Lechtal Alps and the valley bottom of the Stanzer Valley. 
The result of the susceptibility method (left image) shows that the geological formation 
“cretaceous shales” has an unbalanced strong influence on the calculation. The homogeneous 
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grey patch in the northern part of the left image clearly demonstrates this effect. The WoE 
method generally shows similar tendencies, but the areas are more structured, which gives a 
more realistic impression of the landslide prone areas (right image of Fig. 3). Additional tests 
showed clearly, that the grouping of geological units may have a major impact on the result. 

CONCLUSIONS

Landslide susceptibility analysis using univariate statistical models is a complex and sensitive 
task. The selection of appropriate input parameters and representative training data sets are 
crucial for the success of any model. The classification of QuickBird data proved to deliver 
statistically accurate land cover classes, which have been used as variables in the 
susceptibility analysis. As the resulting quality of the applied functional models is directly 
dependant on the quality of the inputs (e.g. spatial resolution and classification accuracy) and 
quantity of data, this is an important argument for using VHR remote sensing data sources. 
Additionally, a ‘pseudo-stereo’ image was generated from the QuickBird satellite image and 
has shown to be very useful for the visual interpretation of landslides in a time- and cost-
saving manner. The different qualities of the used DEMs are clearly discernable in the final 
susceptibility maps. It is recommended to use a DEM with the finest resolution available, in 
order to pinpoint the hazardous spots in detail.
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grey patch in the northern part of the left image clearly demonstrates this effect. The WoE 
method generally shows similar tendencies, but the areas are more structured, which gives a 
more realistic impression of the landslide prone areas (right image of Fig. 3). Additional tests 
showed clearly, that the grouping of geological units may have a major impact on the result. 

CONCLUSIONS
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task. The selection of appropriate input parameters and representative training data sets are 
crucial for the success of any model. The classification of QuickBird data proved to deliver 
statistically accurate land cover classes, which have been used as variables in the 
susceptibility analysis. As the resulting quality of the applied functional models is directly 
dependant on the quality of the inputs (e.g. spatial resolution and classification accuracy) and 
quantity of data, this is an important argument for using VHR remote sensing data sources. 
Additionally, a ‘pseudo-stereo’ image was generated from the QuickBird satellite image and 
has shown to be very useful for the visual interpretation of landslides in a time- and cost-
saving manner. The different qualities of the used DEMs are clearly discernable in the final 
susceptibility maps. It is recommended to use a DEM with the finest resolution available, in 
order to pinpoint the hazardous spots in detail.
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